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CS2303 THEORY OF COMPUTATION

Unit No: I Name: Automata

What is TOC?
In theoretical computer science, the theory of computation is the branch that deals with 

whether and how efficiently problems can be solved on a model of computation, using an 
algorithm. The field is divided into three major branches: automata theory, computability 
theory and computational complexity theory.
In order to perform a rigorous study of computation, computer scientists work with a 
mathematical abstraction of computers called a model of computation. There are several 
models in use, but the most commonly examined is the Turing machine.
Automata theory
In theoretical computer science, automata theory is the study of abstract machines (or more 
appropriately, abstract 'mathematical' machines or systems) and the computational problems 
that can be solved using these machines. These abstract machines are called automata.
This automaton consists of

•
•

states (represented in the figure by 
circles),
and transitions (represented by arrows).As the automaton sees a symbol of input, it makes a transition (or jump) to another state,

according to its transition function (which takes the current state and the recent symbol as 
its inputs).
Uses of Automata: compiler design and parsing.
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Additive inverse: a+(-a)=0
Multiplicative inverse: a*1/a=1
Universal set U={1,2,3,4,5}
Subset A={1,3}
A’ ={2,4,5}
Absorption law: AU(A ∩B) = A, A∩(AUB) = A

De Morgan’s Law:
(AUB)’ =A’ ∩ B’ (A∩B)’ = A’ U B’
Double compliment
(A’)’ =A
A ∩ A’ = Φ

Logic relations:
a     b = > 7a U b
7(a∩b)=7a U 7b

Relations:
Let a and b be two sets a relation R contains aXb.
Relations used in TOC: 
Reflexive: a = a 
Symmetric: aRb = > bRa
Transition: aRb, bRc = > aRc
If a given relation is reflexive, symmentric and transitive then the relation is called 
equivalence relation.

Deductive proof: Consists of sequence of statements whose truth lead us from some 
initial
statement called the hypothesis or the give statement to a conclusion statement.

Additional forms of proof:
Proof of sets
Proof by contradiction
Proof by counter example

Direct proof (AKA) Constructive proof:
If p is true then q is true
Eg: if a and b are odd numbers then product is also an odd 
number. Odd number can be represented as 2n+1
a=2x+1, b=2y+1
product of a X b = (2x+1) X (2y+1)

= 2(2xy+x+y)+1 = 2z+1 (odd number)

2
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Proof by contrapositive:

3
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Proof by Contradiction:

H and not C implies falsehood.

Be regarded as an observation than a 
theorem.

For any sets a,b,c if a∩b = Φ and c is a subset of b the prove that a∩c 

=Φ
Assume: a∩c
Then

Φ

= > a∩b  Φ = > a∩c=Φ(i.e., the assumption is 

4

www.Vidyarthiplus.com

www.Vidyarthiplus.com



III CSE

CSE

CS2303 THEORY OF COMPUTATION

Proof by mathematical Induction:

Languages :

The languages we consider for our discussion is an abstraction of natural languages.
That is, our focus here is on formal languages that need precise and formal 
definitions. Programming languages belong to this category.

Symbols :

Symbols are indivisible objects or entity that cannot be defined. That is, symbols are 
theatoms of the world of languages. A symbol is any single object such 
as
begin, or do.

, a, 0, 1, #,

Alphabets :

An alphabet is a finite, nonempty set of symbols. The alphabet of a language is 
normallydenoted by . When more than one alphabets are considered for discussion, 

then
subscripts may be used (e.g.
introduced.

etc) or sometimes other symbol like G may also be

Example :

Strings or Words over Alphabet :

A string or word over an alphabet is a finite sequence of concatenated symbols 
of

.

5
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Example : 0110, 11, 001 are three strings over the binary alphabet { 0, 1 }
.
aab, abcb, b, cc are four strings over the alphabet { a, b, c
}.
It is not the case that a string over some alphabet should contain all the symbols from
the alphabet. For example, the string cc over the alphabet { a, b, c } does not contain 
the
symbols a and b. Hence, it is true that a string over an alphabet is also a string over 
any superset of that alphabet.
Length of a string :
The number of symbols in a string w is called its length, denoted by |
w|.
Example : | 011 | = 4, |11| = 2, | b | = 1

Convention : We will use small case letters towards the beginning of the English
alphabet to denote symbols of an alphabet and small case letters towards the end 
todenote strings over an alphabet. That 
is,
are strings.

(symbols) and

Some String Operations :

Let and be two strings. The concatenation of x and y

. That is, the concatenation of x and 
y

denoted by xy, is the string
denoted by xy is the string that has a copy of x followed by a copy of y without 
any
intervening space between them.
Example :  Consider the string 011 over the binary alphabet. All the prefixes, 
suffixes
and substrings of this string are listed below.
Prefixes: ε, 0, 01, 011. Suffixes:
ε, 1, 11, 011. Substrings: ε, 0, 
1, 01, 11, 011.

Note that x is a prefix (suffix or substring) to x, for any string x and ε is a prefix (suffix 
or substring) to any string.

A string x is a proper prefix (suffix) of string y if x is a prefix (suffix) of y and x ≠ y.

In the above example, all prefixes except 011 are proper 
prefixes.

Powers of Strings : For any string x and 
integer

, we use to denote the string
formed by sequentially concatenating n copies of x. We can also give an 
inductivedefinition of as follows:

= e, if n = 0 ; otherwise

6
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Example : If x = 011, then = 011011011, = 011 and

Powers of Alphabets :

We write (for some integer k) to denote the set of strings of length k with 
symbolsfrom . In other words,

= { w | w is a string over and | w | = k}. Hence, for any alphabet, denotes the set

of all strings of length zero. That 
is,
the following.

= { e }. For the binary alphabet { 0, 1 } we 
have

The set of all strings over an alphabet is denoted by . That is,

The set contains all the strings that can be generated by iteratively 
concatenatingsymbols from any number of times.

= { a, b }, then = { ε, a, b, aa, ab, ba, bb, aaa, aab, aba, abb, baa, …}.Example : If

Please note that if , then that is . It may look odd that one can
proceed from the empty set to a non-empty set by iterated concatenation. But there is 
a
reason for this and we accept this convention

The set of all nonempty strings over an 
alphabet

is denoted by . That is,

Note that is infinite. It contains no infinite strings but strings of arbitrary 
lengths.
Reversal :

For any string the reversal of the string is .

An inductive definition of reversal can be given as 
follows:

7
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Languages :
A language over an alphabet is a set of strings over that alphabet. Therefore, 

a

is a language.
language L is any subset of . That is, any

Example :

F is the empty language.

is a language for any .

1.

2.

3. {e} is a language for any .  Note that, . Because the language F does not
contain any string but {e} contains one string of length zero.
The set of all strings over { 0, 1 } containing equal number of 0's and 
1's. The set of all strings over {a, b, c} that starts with a.

4.
5.

Convention : Capital letters A, B, C, L, etc. with or without subscripts are normally 
used
to denote languages.
Set operations on languages : Since languages are set of strings we can apply set
operations to languages. Here are some simple examples (though there is nothing 
new in it).

Union :  A string iff or

Example : { 0, 11, 01, 011
}

{ 1, 01, 110 } = { 0, 11, 01, 011, 111 }

Intersection : A string, xϵ L1 ∩ L2 iff x ϵ L1 and x L2 .ϵ

Example : { 0, 11, 01, 011
}

{ 1, 01, 110 } = { 01 }

Complement : 
Usually,

is the universe that a complement is taken with respect 
to.Thus for a language L, the complement is  L(bar) = 

{
| }.

Example : Let L = { x | |x| is even }. Then its complement is the language {
odd }.
Similarly we can define other usual set operations on languages like 
relative complement, symmetric difference, etc.

| |x| is

Reversal of a language :

The reversal of a language L, denoted as , is defined as: .

Example :

1.  Let L = { 0, 11, 01, 011 }. Then = { 0, 11, 10, 110 }.

8
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2.  Let L = { | n is an integer }. Then = { | n is an integer }.

Language concatenation : The concatenation of 
languages

and is defined as

= { xy | and }.

Example : { a, ab }{ b, ba } = { ab, aba, abb, abba }.

Note that ,

1.
2.

3.

in general.

Iterated concatenation of languages : Since we can concatenate two languages, 
we
also repeat this to concatenate any number of languages. Or we can concatenate alanguage with itself any number of times. The 
operation
L with itself n times. This is defined formally as follows:

denotes the concatenation of

Example : Let L = { a, ab }. Then according to the definition, we 
have

and so on.

Kleene's Star operation :  The Kleene star operation on a language L, denoted 
as
defined as follows :

is

= ( Union n in N )

=

= { x | x is the concatenation of zero or more strings from L
}

9
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Thus is the set of all strings derivable by any number of concatenations of strings 
inL. It is also useful to define

= , i.e., all strings derivable by one or more concatenations of strings in L. That 
is

= (Union n in N and n >0)

=

Example : Let L = { a, ab }. Then we have,

=

= {e} {a, ab} {aa, aab, aba, abab} …

=

= {a, ab} {aa, aab, aba, abab} …

Note :  ε is in , for every language L, including
.

The previously introduced definition 
of

is an instance of Kleene star.

(Generates)
Language

(Recognizes)
AutomataGrammar

Automata: A algorithm or program that automatically recognizes if a particular string belongs 
to
the language or not, by checking the grammar of the string.
An automata is an abstract computing device (or machine). There are different 
varities
of such abstract machines (also called models of computation) which can be 
defined mathematically.
Every Automaton fulfills the three basic 
requirements.

• Every automaton consists of some essential features as in real computers. It 
has
a mechanism for reading input. The input is assumed to be a sequence of 
symbols over a given alphabet and is placed on an input tape(or written on 
an input file). The simpler automata can only read the input one symbol at a 
time from left to right but not change. Powerful versions can both read (from 
left to right or right to left) and change the input.

1
0
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• The automaton can produce output of some form. If the output in response to an
input string is binary (say, accept or reject), then it is called an accepter. If it 
produces an output sequence in response to an input sequence, then it is called
a transducer(or automaton with output).
The automaton may have a temporary storage, consisting of an unlimited 
number of cells, each capable of holding a symbol from an alphabet ( whcih 
may be different from the input alphabet). The automaton can both read and 
change the contents of the storage cells in the temporary storage. The accusing
capability of this storage varies depending on the type of the storage.
The most important feature of the automaton is its control unit, which can be
in any one of a finite number of interval states at any point. It can change state
in some defined manner determined by a transition function.

•

•

Figure 1: The figure above shows a diagrammatic representation of a generic
automation.

Operation of the automation is defined as follows.
At any point of time the automaton is in some integral state and is reading a particular 
symbol from the input tape by using the mechanism for reading input. In the next time 
step the automaton then moves to some other integral (or remain in the same state) as
defined by the transition function. The transition function is based on the current state, 
input symbol read, and the content of the temporary storage. At the same time the 
content of the storage may be changed and the input read may be modifed. The 
automation may also produce some output during this transition. The internal state, 
input and the content of storage at any point defines the configuration of the 
automaton at that point. The transition from one configuration to the next ( as defined 
by the transition function) is called a move. Finite state machine or Finite Automation is
the
simplest type of abstract machine we consider. Any system that is at any point of time 
in one of a finite number of interval state and moves among these states in a defined 
manner in response to some input, can be modeled by a finite automaton. It doesnot 
have any temporary storage and hence a restricted model of computation.

1
1
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F  i      n  i      t  e   A  u  t  o  ma      t  a

Automata (singular : automation) are a particularly simple, but useful, model of
computation. They were initially proposed as a simple model for the behavior 
of neurons.

S      t  a      t  es      ,     T  r  a      n  si      t  i      ons   a  nd     F  i      n  i      t  e      -  S      t  a      t  e     Tr  a      n  sit  i      on     S      y  s      t  e      m :

Let us first give some intuitive idea about a state of a system and  st  at      e   
t      ra  n      si  t      i  on      sbefore describing finite 
automata.
Informally,  a         s  ta      t  e   o  f a     s  y  s  te      m is an instantaneous description of that system 
whichgives all relevant information necessary to determine how the system can evolve 
from
that point on.
T      r  an      si  t      i  on      s are changes of states that can occur spontaneously or in response to 
inputs
to the states. Though transitions usually take time, we assume that state transitions 
are instantaneous (which is an abstraction).
Some examples of state transition systems are: digital systems, vending machines, 
etc.
A system containing only a finite number of states and transitions among them is 
called
a f      i  n      i  te      -  s  t  at      e     t      r  an      si  t      i  o  n     s  y  s  te      m  .
Finite-state transition systems can be modeled abstractly by a mathematical 
model
called f      i  n      i  t  e   a  ut      o  m      a  t      i  o      n
D  e      t  e      r  mi      n  is      t  i      c     F  i      n  i      t  e   (-  s      t  a      t  e      )   A  u  t  o  ma      t  a

Informally, a DFA (Deterministic Finite State Automaton) is a simple machine that 
reads
an input string -- one symbol at a time -- and then, after the input has been completely 
read, decides whether to accept or reject the input. As the symbols are read from the 
tape, the automaton can change its state, to reflect how it reacts to what it has seen 
so far. A machine for which a deterministic code can be formulated, and if  there is 
only one unique way to formulate the code, then the machine is called deterministic 
finite automata.
Thus, a DFA conceptually consists of 3 parts:

1. A tape to hold the input string. The tape is divided into a finite number of 
cells.Each cell holds a symbol from .

2.
3.

A tape head for reading symbols from the tape
A control , which itself consists of 3 things:

finite number of states that the machine is allowed to be in (zero or 
more
states are designated as accept or final states),
a current state, initially set to a start state,

o

o

1
2
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a state transition function for changing the current 
state.

o

An automaton processes a string on the tape by repeating the following actions until 
the
tape head has traversed the entire string:

1.  The tape head reads the current tape cell and sends the symbol s found there 
to

the control. Then the tape head moves to the next cell.
2.  he control takes s and the current state and consults the state transition 

function to get the next state, which becomes the new current state.
Once the entire string has been processed, the state in which the automation enters 
is
examined. If it is an accept state , the input string is accepted ; otherwise, the string 
is rejected . Summarizing all the above we can formulate the following formal 
D  ete      r  m      i  n      is  t      ic     Fi  n      i  t  e     S      t  at      e   A  ut      o  m  at      o  n : A Deterministic Finite State Automaton (DFA) is

a 5-tuple :

•

•

•

Q is a finite set of states.
is a finite set of input symbols or alphabet

is the “next state” transition function (which is total ). 
Intuitively,

is
a function that tells which state to move to in response to an input, i.e., if M is 
in
state q and sees input a, it moves to state

is the start state.

is the set of accept or final states.

.

•

•

Acceptance of Strings :

A DFA accepts a string
such that

if there is a sequence of states in 
Q

1.

2.

3.

is the start state.

for all .

Language Accepted or Recognized by a DFA :

The language accepted or recognized by a DFA M is the set of all strings accepted 
by
M , and is denoted by i.e. The notion of
acceptance can also be made more precise by extending the transition 
function

.

Extended transition function :

1
3
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Extend (which is function on symbols) to a function on strings, 
i.e.

.

That is, is the state the automation reaches when it starts from the state q 
andfinish processing the string w. Formally, we can give an inductive definition as 

follows:
The language of the DFA M is the set of strings that can take the start state to one of
the accepting states i.e.

L(M) = { | M accepts w }

= { | }

Example 1 :

is the start state

It is a formal description of a DFA. But it is hard to comprehend. For ex. The 
language
of the DFA is any string over { 0, 1} having at least one 1
We can describe the same DFA by transition table or state transition diagram 
as
following:

Transition Table :

1
4
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It is easy to comprehend the transition 
diagram.

Explanation : We cannot reach find state

no. of 0's at the beginning. ( The self-loop 
at

w/0 or in the i/p string. There can be any

on label 0 indicates it ). Similarly 
therecan be any no. of 0's & 1's in any order at the end of the 

string.
Transition table :

It is basically a tabular representation of the transition function that takes two 
arguments
(a state and a symbol) and returns a value (the “next state”).

Rows correspond to states,
Columns correspond to input symbols,
Entries correspond to next states
The start state is marked with an arrow
The accept states are marked with a star 
(*).

•

•
•
•

•

(State) Transition diagram :

A state transition diagram or simply a transition diagram is a directed graph which 
can
be constructed as follows:

1.

2.

For each state in Q there is a node.

There is a directed edge from node q to node p labeled a 
iff

. (If there
are several input symbols that cause a transition, the edge is labeled by the list 
of
these symbols.)
There is an arrow with no source into the start state.
Accepting states are indicated by double circle.

3.
4.

1
5
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5.
6.  Here is an informal description how a DFA operates. An input to a DFA can be

any string . Put a pointer to the start state q. Read the input string w 
fromleft to right, one symbol at a time, moving the pointer according to the 

transition
function, . If the next symbol of w is a and the pointer is on state p, move the
pointer to . When the end of the input string w is encountered, the 

pointeris on some state, r. The string is said to be  a      c  c  ept      e  d by the DFA 
if

and
r  e      j  e      c  te      d if

7.  A language

. Note that there is no formal mechanism for moving the 
pointer.

is said to be  r  e      g  u      l  a      r if L = L(M) for some DFA M.

Regular Expressions: Formal Definition

We construct REs from primitive constituents (basic elements) by repeatedly 
applying
certain recursive rules as given below. (In the definition)
Definition : Let S be an alphabet. The regular expressions are defined recursively 
as
follows.
Basis :

i) is a RE

ii) is a RE

iii) , a is RE.

These are called primitive regular expression i.e. Primitive 
Constituents
Recursive Step :

If and are REs over, then so are

i)

ii)

1
6
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iii)

iv)

Closure : r is RE over only if it can be obtained from the basis elements 
(Primitive

REs) by a finite no of applications of the recursive step (given in 2).
Example : Let = { 0,1,2 }. Then (0+21)*(1+ F ) is a RE, because we can construct 

thisexpression by applying the above rules as given in the following 
step. Steps

1

2

3

4

5

6

7

8

9

10

11

12

RE Constructed

1

Rule Used

Rule 1(iii)

Rule 1(i)

Rule 2(i) & Results of Step 1, 2

Rule 2(iv) & Step 3

1(iii)

1(iii)

2(ii), 5, 6

1(iii)

2(i), 7, 8

2(iv), 9

2(iii), 10

2(ii), 4, 11

1+

(1+
2

1

21

0

)

0+21

(0+21)

(0+21)*

(0+21)*
Language described by REs : Each describes a language (or a language is
associated with every RE). We will see later that REs are used to attribute 
regular languages.

Notation : If r is a RE over some alphabet then L(r) is the language associate with r
.
We can define the language L(r) associated with (or described by) a REs as follows.

1. is the RE describing the empty language i.e. L(   ) = .

2. is a RE describing the language {  } i.e. L(   ) = {   } .

3. , a is a RE denoting the language {a} i.e . L(a) = {a}
.

4. If and are REs denoting language L( ) and L( ) respectively, then

) ∪ L(i) is a regular expression denoting the language 
L(

) = L( )

1
7
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ii) is a regular expression denoting the language L( )=L( ) L( )

iii) is a regular expression denoting the 
language

iv) ( ) is a regular expression denoting the language 
L((

)) = L( )

Example : Consider the RE (0*(0+1)). Thus the language denoted by the RE 
is
L(0*(0+1)) = L(0*) L(0+1) .......................by 
4(ii)
= L(0)*L(0) ∪ L(1)

= { , 0,00,000,........} {0} {1}

= { , 0,00,000,........} {0,1}

= {0, 00, 000, 0000,..........,1, 01, 001, 
0001,...............}
Precedence Rule

Consider the RE ab + c. The language described by the RE can be thought of 
eitherL(a)L(b+c) or L(ab) L(c) as provided by the rules (of languages described by 

REs)given already. But these two represents two different languages lending to 
ambiguity.
To remove this ambiguity we can either
1) Use fully parenthesized expression- (cumbersome) 
or
2) Use a set of precedence rules to evaluate the options of REs in some order. 
Like
other algebras mod in mathematics.
For REs, the order of precedence for the operators is as 
follows:
i) The star operator precedes concatenation and concatenation precedes union 
(+)
operator.
ii) It is also important to note that concatenation & union (+) operators are 
associative
and union operation is commutative.
Using these precedence rule, we find that the RE ab+c represents the language 
L(ab)

L(c) i.e. it should be grouped as ((ab)+c).
We can, of course change the order of precedence by using parentheses. For 
example,
the language represented by the RE a(b+c) is L(a)L(b+c).

1
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Example : The RE ab*+b is grouped as ((a(b*))+b) which describes the language
L(a)(L(b))* L(b)

Example : The RE (ab)*+b represents the language 
(L(a)L(b))*

L(b).

Example : It is easy to see that the RE (0+1)*(0+11) represents the language of 
all
strings over {0,1} which are either ended with 0 or 11.
Example : The regular expression r =(00)*(11)*1 denotes the set of all strings with 
an

even number of 0's followed by an odd number of 1's i.e.

Note : The notation is used to represent the RE rr*. 
Similarly,

represents the RE

rr, denotes r, and so on.

An arbitrary string over = {0,1} is denoted as (0+1)*.

Exercise : Give a RE r over {0,1} s.t. 
L(r)={
consecutive 1's}

has at least one pair of

Solution : Every string in L(r) must contain 00 somewhere, but what comes before 
and
what goes before is completely arbitrary. Considering these observations we can 
write the REs as (0+1)*11(0+1)*.
Example : Considering the above example it becomes clean that the RE
(0+1)*11(0+1)*+(0+1)*00(0+1)* represents the set of string over {0,1} that contains the
substring 11 or 00.

Example : Consider the RE 0*10*10*. It is not difficult to see that this RE describes 
the
set of strings over {0,1} that contains exactly two 1's. The presence of two 1's in the 
RE
Example : Consider the language of strings over {0,1} containing two or more 
1's.
Solution : There must be at least two 1's in the RE somewhere and what comes 
before,
between, and after is completely arbitrary. Hence we can write the RE as 
(0+1)*1(0+1)*1(0+1)*. But following two REs also represent the same language, 
each ensuring presence of least two 1's somewhere in the string
i) 0*10*1(0+1)*

ii) (0+1)*10*10*

Example : Consider a RE r over {0,1} such 
that

1
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L(r) = { has no pair of consecutive 1's}

Solution : Though it looks similar to ex ……., it is harder to construct to construct. 
We
observer that, whenever a 1 occurs, it must be immediately followed by a 0. This 
substring may be preceded & followed by any no of 0's. So the final RE must be a 
repetition of strings of the form: 00…0100….00 i.e. 0*100*. So it looks like the RE is
(0*100*)*. But in this case the strings ending in 1 or consisting of all 0's are not 
accounted for. Taking these observations into consideration, the final RE is  r =(0*100*)(1+ )+0*(1+  ).

Alternative Solution :

The language can be viewed as repetitions of the strings 0 and 01. Hence get the RE 
as
r = (0+10)*(1+  ).This is a shorter expression but represents the same language.
Regular Expression and Regular Language :

Equivalence(of REs) with FA
:
Recall that, language that is accepted by some FAs are known as Regular language.
The two concepts : REs and Regular language are essentially same i.e. (for) every 
regular language can be developed by (there is) a RE, and for every RE there is a 
Regular Langauge. This fact is rather suprising, because RE approach to describing 
language is fundamentally differnet from the FA approach. But REs and FA are 
equivalent in their descriptive power. We can put this fact in the focus of the 
following Theorem.

Theorem : A language is regular iff some RE describes it.

This Theorem has two directions, and are stated & proved below as a separate 
lemma

RE to FA :

REs denote regular languages :

Lemma : If L(r) is a language described by the RE r, then it is regular i.e. there is a 
FA
such that L(M) L(r).
Proof : To prove the lemma, we apply structured index on the expression r. First, 
weshow how to construct FA for the basis elements: , and for any . Then we show
how to combine these Finite Automata into Complex Automata that accept the 
Union,
Concatenation, Kleen Closure of the languages accepted by the original 
smaller automata.

2
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Use of NFAs is helpful in the case i.e. we construct NFAs for every REs which 
are
represented by transition diagram only.
Basis :

• Case (i) : . Then . Then and the following NFA N

where Q = {q} andrecognizes L(r). Formally

.

• Case (ii) : . , and the following NFA N accepts L(r). Formally

where .

Since the start state is also the accept step, and there is no any transition defined, it 
will accept the only string and nothing else.

• Case (iii) : r = a for some
accepts L(r).

. Then L(r) = {a}, and the following NFA 
N

Formally, where for or

Induction :

2
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Assume that the start of the theorem is true for 
REs

and . Hence we can assume

that we have automata

respectively i.e.

and that accepts languages denoted by REs and ,

and . The FAs are represented
schematically as shown below.

Each has an initial state and a final state. There are four cases to 
consider.

Case (i) : Consider the RE denoting the language

to accept the language denoted by 
RE

. We

as

•

construct FA
follows :

, from and

Create a new (initial) start state

.This is the initial state of

and give - transition to the initial state of and

.

• Create a final state and give -transition from the two final state 
of

and

. is the only final state of and final state of and will be ordinary

states in .

• All the state of and are also state of .

2
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• All the moves of and are also moves of . [ Formal Construction]

It is easy to prove that

Proof: To show that we must show that

=

= by following transition of

Starts at initial state and enters the start state of either or follwoing the
transition i.e. without consuming any input. WLOG, assume that, it enters the start 
state
of . From this point onward it has to follow only the transition 

of
to enter the final

state of , because this is the only way to enter the final state of M by following the 
e-transition.(Which is the last transition & no input is taken at hte transition). Hence 

the
whole input w is considered while traversing from the start state 
of

to the final state

of . Therefore must accept .

Say, or .

WLOG, say

Therefore when process the string w , it starts at the initial state and enters the 
final

state when w consumed totally, by following its transition. Then also accepts w, by

starting at state and taking -transition enters the start state of -follows the moves

of to enter the final state of consuming input w thus takes -transition to .
Hence proved

• Case(ii) : Consider the RE denoting the language

as follows :

. We construct

FA from & to accept

2
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Create a new start state and a new final state

1. Add - transition from

to the start state of

to

o

o

final state of to the start state of

are also the states of

.

are also included in

o

2. All the states of . has 2 more states than that of

namely and

3. All the moves of .

By the transition of type (b),

By the transition of type (a),

can accept .

can enters the initial state of w/o any input and then

follow all kinds moves of to enter the final state of and then following -transition

can enter . Hence if any is accepted by then w is also accepted by . By

the transition of type (b), strings accepted 
by

can be repeated by any no of times 
&

thus accepted by . Hence accepts and any string accepted by repeated (i.e.

concatenated) any no of times. 
Hence

Case(iv) : Let =(  ). Then the FA is also the FA for (  ), since the use of
parentheses does not change the language denoted by the 
expression
Non-Deterministic Finite Automata
Nondeterminism is an important abstraction in computer science. Importance of 
nondeterminism is found in the design of algorithms. For examples, there are many 
problems with efficient nondeterministic solutions but no known efficient deterministic 
solutions. ( Travelling salesman, Hamiltonean cycle, clique, etc). Behaviour of a 
process is in a distributed system is also a good example of nondeterministic situation. 
Because

24
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the behaviour of a process might depend on some messages from other processes
that
might arrive at arbitrary times with arbitrary contents.
It is easy to construct and comprehend an NFA than DFA for a given regular language.
The concept of NFA can also be used in proving many theorems and results. Hence, it
plays an important role in this subject.
In the context of FA nondeterminism can be incorporated naturally. That is, an NFA is
defined in the same way as the DFA but with the following two exceptions:• multiple next state.

• - transitions.

Multiple Next State :

• In contrast to a DFA, the next state is not necessarily uniquely determined by 
the
current state and input symbol in case of an NFA. (Recall that, in a DFA there is
exactly one start state and exactly one transition out of every state for eachsymbol in ).

• This means that - in a state q and with input symbol a - there could be one, 
morethan one or zero next state to go, i.e. the value 
of

is a subset of Q. Thus

could be the next= which means that any one of
state.

The zero next state case is a special one 
giving

• = , which means that
there is no next state on input symbol when the automata is in state q. In such 
a
case, we may think that the automata "hangs" and the input will be rejected.

- transitions :

In an -transition, the tape head doesn't do anything- it doesnot read and it doesnot
move. However, the state of the automata can be changed - that is can go to zero, 
one
or more states. This is written formally 
as

implying that the next

state could by any one of w/o consuming the next input symbol.

Acceptance :

Informally, an NFA is said to accept its input if it is possible to start in some start state
and process , moving according to the transition rules and making choices along 

theway whenever the next state is not uniquely defined, such that 
when

is completely
processed (i.e. end of is reached), the automata is in an accept state. There may 

beseveral possible paths through the automation in response to an 
input

since the start
state is not determined and there are choices along the way because of multiple 
next
states. Some of these paths may lead to accpet states while others may not. The

2
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automation is said to accept if at least one computation path on 
input

starting from
at least one start state leads to an accept state- otherwise, the automation rejects 
input. Alternatively, we can say that, is accepted iff there exists a path with 

label
from

some start state to some accept state. Since there is no mechanism for 
determiningwhich state to start in or which of the possible next moves to take (including 
the

-
transitions) in response to an input symbol we can think that the automation is 
having
some "guessing" power to chose the correct one in case the input is accepted
Example 1 : Consider the language L = { {0, 1}* | The 3rd symbol from the right is
1}. The following four-state automation accepts 
L.

The m/c is not deterministic since there are two transitions from 
state

on input 1 and

no transition (zero transition) from on both 0 & 1.

For any string whose 3rd symbol from the right is a 1, there exists a sequence of 
legal

transitions leading from the start state q, to the accept 
state

. But for any string
where 3rd symbol from the right is 0, there is no possible sequence of 
legaltranisitons leading from

L?
and . Hence m/c accepts L. How does it accept any 

string

Formal definition of NFA :

Formally, an NFA is a quituple
the same meaning as for a DFA, but

where Q, , , and F bear
, the transition function is redefined as 
follows:

where P(Q) is the power set of Q i.e. .

The Langauge of an NFA
:
From the discussion of the acceptance by an NFA, we can give the formal definition of 
a
language accepted by an NFA as follows :

If is an NFA, then the langauge accepted by N is writtten as L(N) 
is

given by .

That is, L(N) is the set of all strings w in
accepting state.

such that contains at least one

2
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Removing ϵ-transition:
- transitions do not increase the power of an NFA . That is, any
transition), we can always construct an equivalent NFA without

- NFA ( NFA with
-transitions. The

equivalent NFA must keep track where the NFA goes at every step during
computation. This can be done by adding extra transitions for removal of 
every
transitions from the - NFA as follows.

-

If we removed the - transition from the - NFA , then we need to moves

which are reachable from state q (infrom state p to all the state on input symbol
the - NFA ) on same input symbol q. This will allow the modified NFA to move from
state p to all states on some input symbols which were possible in case 
of

-NFA on
the same input symbol. This process is stated formally in the following 
theories.
Theorem if L is accepted by an - NFA N , then there is some equivalent

without transitions accepting the same language 
LProof

:

Le
t

be the given with

We construct

Where, for all and and

Other elements of N' and 
N

We can show that i.e. N' and N are equivalent.

We need to prove that

i.e.

We will show something more, that 
is,

2
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We will show something more, that 
is,

Ba      sis         :   , then

But by definition of .

Induction hypothesis Let the statement hold for 
all

with .

By definition of extension of

By inductions hypothesis.

Assuming that

By definition of

Since

To complete the proof we consider the 
case

When i.e. then

2
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and by the construction of wherever constrains a state in F.

If (and thus is not in F ), then with leads to an accepting state in N' iff it 
leadto an accepting state in N ( by the construction of N' and N

).

Also, if ( , thus w is accepted by N' iff w is accepted by N 
(iff

)

If (and, thus in M we load in F ), thus is accepted by both N' and N .

Let . If w cannot lead to in N , then . (Since can add transitions to get an accept

state). So there is no harm in making an accept state in N'.

Ex: Consider the following NFA with - transition.

Transition Diagram

Transition diagram for ' for the equivalent NFA without - moves

2
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Since the start state q0 must be final state in the equivalent NFA .

Since and and we add moves and

in the equivalent NFA . Other moves are also constructed 
accordingly.

-closures:

The concept used in the above construction can be made more formal by defining 
the-closure for a state (or a set of states). The idea 

of
-closure is that, when moving

from a state p to a state q (or from a set of states Si to a set of states Sj ) an 
input

,
we need to take account of all
Formally, for a given state q,

-moves that could be made after the 
transition.

-closures:

Similarly, for a given set

-closures:

So, in the construction of equivalent NFA N' without

moves. the first rule can now be written as

-transition from any NFA with

3
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Equivalence of NFA and DFA

It is worth noting that a DFA is a special type of NFA and hence the class of languages
accepted by DFA s is a subset of the class of languages accepted by NFA s. 
Surprisingly, these two classes are in fact equal. NFA s appeared to have more power
than DFA s because of generality enjoyed in terms of -transition and multiple next
states. But they are no more powerful than DFA s in terms of the languages 
they
accept.
Converting DFA to NFA

Theorem: Every DFA has as equivalent NFA

Proof: A DFA is just a special type of an NFA . In a DFA , the transition functions is

defined from whereas in case of an NFA it is defined from

be a DFA . We construct an equivalent NFA

and

as
follows.

i. e

If and

All other elements of N are as in D.

If then there is a sequence of states such that

Then it is clear from the above construction of N that there is a sequence of states (in 
N)

such that and and hence

Similarly we can show the converse.

Hence ,

Given any NFA we need to construct as equivalent DFA i.e. the DFA need to simulate
the behaviour of the NFA . For this, the DFA have to keep track of all the states where
the NFA could be in at every step during processing a given input string.

3
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There are possible subsets of states for any NFA with n states. Every subset
corresponds to one of the possibilities that the equivalent DFA must keep track of. 
Thus,the equivalent DFA will have states.

The formal constructions of an equivalent DFA for any NFA is given below. We first
consider an NFA without

transitions later.
transitions and then we incorporate the affects 
of

Formal construction of an equivalent DFA for a given NFA without transitions.

Given an without - moves, we construct an equivalent 
DFA

as follows

i.e.

(i.e. every subset of Q which as an element in F is considered as a final 
statin DFA D )

for all and

where

That is,

To show that this construction works we need to show that L(D)=L(N) 
i.e.

Or,

We will prove the following which is a stranger statement thus 
required.

3
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Proof : We will show by inductions 
on

Basis If =0, then w 
=

by definition.So
,

Inductions hypothesis : Assume inductively that the statement 
holds
less than or equal to n.

of length

Inductive step

Let , then with

Now,

Now, given any NFA with -transition, we can first construct an equivalent NFA without
-transition and then use the above construction process to construct an 
equivalent

DFA , thus, proving the equivalence of NFA s and DFA s..
It is also possible to construct an equivalent DFA directly from any given NFA with -
transition by integrating the concept 
of

-closure in the above construction.

Recall that, for any

- closure :

3
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In the equivalent DFA , at every step, we need to modify the transition 
functions

to
keep track of all the states where the NFA can go on -transitions. This is done by

replacing
follows:

by -closure , i.e. we now compute at every step as

Besides this the initial state of the DFA D has to be modified to keep track of all the
states that can be reached from the initial state of NFA on zero or more 
-transitions.
This can be done by changing the initial 
state

to -closure ( ) .
It is clear that, at every step in the processing of an input string by the DFA D , it enters
a state that corresponds to the subset of states that the NFA N could be in at that 
particular point. This has been proved in the constructions of an equivalent NFA for 
any

-NFAIf the number of states in the NFA is n , then there are
each state in the DFA is a subset of state of the NFA .

states in the DFA . That is,

But, it is important to note that most of these states are inaccessible from the start
state and hence can be removed from the DFA without changing the accepted
language. Thus, in fact, the number of states in the equivalent DFA would be much 
lessthan .
Example : Consider the NFA given below.

Since there are 3 states in the NFA

3
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There will be states (representing all possible subset of states) in the 
equivalentDFA . The transition table of the DFA constructed by using the subset constructions

process is produced here.

The start state of the DFA is - closures

The final states are all those subsets that 
contains

in the NFA).

(since

Let us compute one entry,

Similarly, all other transitions can be 
computed

Corresponding Transition fig. for DFA.Note that states

are not accessible and hence can be removed. This
gives us the following simplified DFA with only 3 states.

35
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It is interesting to note that we can avoid encountering all those inaccessible 
or

unnecessary states in the equivalent DFA by performing the following two steps
inductively.

1.  If is the start state of the NFA, then make - closure ( ) the start state of the
equivalent DFA . This is definitely the only accessible state.

2.  If we have already computed a 
set

of states which are accessible. 
Then

. compute because these set of states will also be 
accessible.

Following these steps in the above example, we get the transition table given 
below

3
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UNIT NO: II NAME: REGULAR EXPRESSIONS AND LANGUAGES

Regular Expressions: Formal 
Definition

We construct REs from primitive constituents (basic elements) by repeatedly applying certain recursive rules 
as given below. (In the definition)

Definition : Let S be an alphabet. The regular expressions are defined recursively as 
follows.

Basis :

i) is a RE

ii) is a RE

, a is RE.iii)

These are called primitive regular expression i.e. Primitive 
Constituents

Recursive Step :

If and are REs over, then so are

i)

ii)

iii)

iv)

Closure : r is RE over only if it can be obtained from the basis elements (Primitive REs) by a finite no 
of applications of the recursive step (given in 2).

Example : Let = { 0,1,2 }. Then (0+21)*(1+ F ) is a RE, because we can construct this expression 
byapplying the above rules as given in the following step.

Steps

1

2

3

RE Constructed

1

Rule Used

Rule 1(iii)

Rule 1(i)

Rule 2(i) & Results of Step 1, 21+

3
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4

5

6

7

8

9

10

11

12

Rule 2(iv) & Step 3

1(iii)

1(iii)

2(ii), 5, 6

1(iii)

2(i), 7, 8

2(iv), 9

2(iii), 10

2(ii), 4, 11

(1+

2

1

21

0

)

0+21

(0+21)

(0+21)*

(0+21)*
Language described by REs : Each describes a language (or a language is associated with every RE). 
We
will see later that REs are used to attribute regular languages.
Notation : If r is a RE over some alphabet then L(r) is the language associate with r . We can define 
the
language L(r) associated with (or described by) a REs as follows.

1. is the RE describing the empty language i.e. L(   ) = .

is a RE describing the language {   } i.e. L(   ) = {   } .2.

3. , a is a RE denoting the language {a} i.e . L(a) = {a} .

are REs denoting language L( ) and L(4. If and ) respectively, then

) = L( ) ∪ L(i) is a regular expression denoting the language L( )

is a regular expression denoting the language L( )=L( ) L(ii) )

iii) is a regular expression denoting the language

iv) ( ) is a regular expression denoting the language L(( )) = L( )

Example : Consider the RE (0*(0+1)). Thus the language denoted by the RE is

L(0*(0+1)) = L(0*) L(0+1) .......................by 4(ii)

= L(0)*L(0) ∪ L(1)

= { , 0,00,000,........} {0} {1}

= { , 0,00,000,........} {0,1}

= {0, 00, 000, 0000,..........,1, 01, 001, 0001,...............}

Precedence Rule

3
8

www.Vidyarthiplus.com

www.Vidyarthiplus.com



III CSE

CSE

CS2303 THEORY OF COMPUTATION

Consider the RE ab + c. The language described by the RE can be thought of either L(a)L(b+c) or
L(ab) L(c) as provided by the rules (of languages described by REs) given already. But these 

tworepresents two different languages lending to ambiguity. To remove this ambiguity we can either

1) Use fully parenthesized expression- (cumbersome) or

2) Use a set of precedence rules to evaluate the options of REs in some order. Like other algebras mod 
in mathematics.

For REs, the order of precedence for the operators is as follows:

i) The star operator precedes concatenation and concatenation precedes union (+) operator.

ii) It is also important to note that concatenation & union (+) operators are associative and union operation is
commutative.

Using these precedence rule, we find that the RE ab+c represents the language L(ab)
grouped as ((ab)+c).

L(c) i.e. it should be

We can, of course change the order of precedence by using parentheses. For example, the 
language represented by the RE a(b+c) is L(a)L(b+c).

Example : The RE ab*+b is grouped as ((a(b*))+b) which describes the language L(a)(L(b))* L(b)

Example : The RE (ab)*+b represents the language (L(a)L(b))* L(b).

Example : It is easy to see that the RE (0+1)*(0+11) represents the language of all strings over {0,1} which are
either ended with 0 or 11.

Example : The regular expression r =(00)*(11)*1 denotes the set of all strings with an even number of 0's

followed by an odd number of 1's i.e.

is used to represent the RE rr*. Similarly, represents the RE rr, r,Note : The notation
and so on.

denotes

An arbitrary string over = {0,1} is denoted as (0+1)*.

Exercise : Give a RE r over {0,1} s.t. L(r)={ has at least one pair of consecutive 1's}

Solution : Every string in L(r) must contain 00 somewhere, but what comes before and what goes before 
is completely arbitrary. Considering these observations we can write the REs as (0+1)*11(0+1)*.

Example : Considering the above example it becomes clean that the RE (0+1)*11(0+1)*+(0+1)*00(0+1)*
represents the set of string over {0,1} that contains the substring 11 or 00.

3
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Example : Consider the RE 0*10*10*. It is not difficult to see that this RE describes the set of strings over {0,1}
that contains exactly two 1's. The presence of two 1's in the RE and any no of 0's before, between and after 
the
1's ensure it.

Example : Consider the language of strings over {0,1} containing two or more 
1's.

Solution : There must be at least two 1's in the RE somewhere and what comes before, between, and after is
completely arbitrary. Hence we can write the RE as (0+1)*1(0+1)*1(0+1)*. But following two REs also 
represent the same language, each ensuring presence of least two 1's somewhere in the string

i) 0*10*1(0+1)*

ii) (0+1)*10*10*

Example : Consider a RE r over {0,1} such that

L(r) = { has no pair of consecutive 1's}

Solution : Though it looks similar to ex ……., it is harder to construct to construct. We observer that, 
whenever
a 1 occurs, it must be immediately followed by a 0. This substring may be preceded & followed by any no of
0's. So the final RE must be a repetition of strings of the form: 00…0100….00 i.e. 0*100*. So it looks like the
RE is (0*100*)*. But in this case the strings ending in 1 or consisting of all 0's are not accounted for. Takingthese observations into consideration, the final RE is r = (0*100*)(1+ )+0*(1+   ).

Alternative Solution :
The language can be viewed as repetitions of the strings 0 and 01. Hence get the RE as r = (0+10)*(1+   ).This
is a shorter expression but represents the same language.

Regular Expression:

FA to regular expressions:

FA to RE (REs for Regular Languages)
:

Lemma : If a language is regular, then there is a RE to describe it. i.e. if L = L(M) for some DFA M, then there
is a RE r such that L = L(r).

Proof : We need to construct a RE r such 
that

. Since M is a DFA, it has a finite
no of states. Let the set of states of M is Q = {1, 2, 3,..., n} for some integer n. [ Note : if the n states of M 
were
denoted by some other symbols, we can always rename those to indicate as 1, 2, 3,..., n ]. The required RE is

is a RE denoting the language which is the set of all strings w such that w is the label of 
a

Notations :

path from state i to state 
j

in M, and that path has no intermediate state whose number is
greater then k. ( i & j (begining and end pts) are not considered to be "intermediate" so i and /or j can be

4
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greater than k )

We now construct inductively, for all i, 
j

Q starting at k = 0 and finally reaching k = n.

Basis : k = 0, i.e. the paths must not have any intermediate state ( since all states are numbered 1 
orabove). There are only two possible paths meeting the above condition :

1. A direct transition from state i to state j.

= a if then is a transition from state i to state j on symbol the single symbol 
a.

o

o = if there are multiple transitions from state i to state j on 
symbols

.

o = f if there is no transition at all from state i to state j.
2. All paths consisting of only one node i.e. when i = j. This gives the path of length 0 (i.e. the RE

denoting the string
corresponding REs i.e.

) and all self loops. By simply adding Î to various cases above we get the

o = + a if there is a self loop on symbol a in state i
.

if there are self loops in state i as multiple symbolso = +

.

o = if there is no self loop on state 
i.

Induction :

Assume that there exists a path from state i to state j such that there is no intermediate state whose number 
is
greater than k. The corresponding Re for the label of the path is
There are only two possible cases :

.

1. The path dose not go through the state k at all i.e. number of all the intermediate states are less than

k. So, the label of the path from state i to state j is tha language described by the 
RE

.
2. The path goes through the state k at least once. The path may go from i to j and k may appear more

than once. We can break the into pieces as shown in the figure 7.

4
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Figure 7

1. The first part from the state i to the state k which is the first recurence. In this path, all intermediate

states are less than k and it starts at iand ends at k. So the RE
label of path.

2. The last part from the last occurence of the state k in the path to state j. In this path also, no

denotes the language of the

intermediate state is numbered greater than k. Hence the RE
of the path.

3. In the middle, for the first occurence of k to the last occurence of k , represents a loop which may be
taken zero times, once or any no of times. And all states between two consecutive k's are 
numbered less than k.

denoting the language of the label

.The label of the path from state i to stateHence the label of the path of the part is denoted by the RE
j is the concatenation of these 3 parts which is

Since either case 1 or case 2 may happen the labels of all paths from state i to j is denoted by the following 
RE

We can construct for all i, 
j

{1,2,..., n} in increasing order of k starting with the basis k = 0 upto k = 
n

since depends only on expressions with a small superscript (and hence will be available). WLOG, 
assume

that state 1 is the start state and are the m final states where 
ji

{1, 2, ... , n }, and

. According to the convention used, the language of the automatacan be denoted by the RE

4
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Since is the set of all strings that starts at start state 1 and finishes at final 
state

following the transition
of the FA with any value of the intermediate state (1, 2, ... , n) and hence accepted by the automata.

Regular Grammar:

A grammar is right-linear if each production has one of the following three 
forms:

•
•
•

A
A
A

cB ,
c,

Where A, 
B

( with A = B allowed) and . A grammar G is left-linear if each production has once of
the following three forms.

A Bc , A c, 
A

A right or left-linear grammar is called a regular grammar.

Regular grammar and Finite Automata are equivalent as stated in the following 
theorem.

Theorem : A language L is regular iff it has a regular grammar. We use the following two lemmas to prove 
the above theorem.

Lemma 1 : If L is a regular language, then L is generated by some right-linear 
grammar.

be a DFA that accepts L.Proof : Let

Let and .

We construct the right-linear grammar by letting

N = Q , and

[ Note: If , then ]

. For M to accept w, there must be a sequence of statesLet such that

4
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and

By construction, the grammar G will have one production for each of the above transitions. Therefore, we 
have the corresponding derivation.

Hence 
w

L(g).

Conversely, if , then the derivation of w in G must have the form as given above. But,
then the construction of G from M implies that

, where , completing the proof.

Lemma 2 : Let be a right-linear grammar. Then L(G) is a regular language.

Proof: To prove it, we construct a FA M from G to accept the same language.

is constructed as follows:

( is a special sumbol not in N )

,

For any and and is defined as

if

and , if .

We now show that this construction works.

. Then there is a derivation of w in G of the formLet

4
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By contradiction of M, there must be a sequence of transitions

i.e. w is accepted by M.implying that

is accepted by M, then because is the only accepting state of M, theConversely, if
transitions causing w to be accepted by M will be of the form given above. These transitions corresponds to 
a
derivationof w in the grammar G. Hence , completing the proof of the lemma.

Given any left-linear grammar G with production of the 
form

, we can construct from it a right-

withby replacing every production of G of the formlinear grammar

It is easy to prove that . Since is right-linear, is regular. But then so are

i.e. because regular languages are closed under reversal.

Putting the two lemmas and the discussions in the above paragraph together we get the proof of the 
theorem-

A language L is regular iff it has a regular grammar
Example : Consider the grammar

It is easy to see that G generates the language denoted by the regular expression (01)*0.
The construction of lemma 2 for this grammar produces the follwoing FA.
This FA accepts exactly (01)*1.

Decisions Algorithms for CFL

In this section, we examine some questions about CFLs we can answer. A CFL may be represented using a
CFG or PDA. But an algorithm that uses one representation can be made to work for the others, since we 
can construct one from the other.

4
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Testing Emptiness :

Theorem : There are algorithms to test emptiness of a 
CFL.

Proof : Given any CFL L, there is a CFG G to generate it. We can determine, using the construction 
described
in the context of elimination of useless symbols, whether the start symbol is useless. If so, 
then otherwise not.

;

Testing Membership :

Given a CFL L and a string x, the membership, problem is to determine 
whether

?

Given a PDA P for L, simulating the PDA on input string x doesnot quite work, because the PDA can grow 
itsstack indefinitely on input, and the process may never terminate, even if the PDA is 

deterministic.

is given such that L = L(G).So, we assume that a CFG

Let us first present a simple but inefficient algorithm.

Convert G to in CNF generating . If the input string , then we need to

determine whether and it can easily be done using the technique given in the context of elimination of

-production. If , then iff . Consider a derivation under a grammar in CNF. At
every step, a production in CNF in used, and hence it adds exactly one terminal symbol to the sentential 
form.
Hence, if the length of the input string x is n, then it takes exactly n steps to derive x ( provided x is 
in

).

is K. So at every step in derivation, thereLet the maximum number of productions for any nonterminal 
in
are atmost k choices. We may try out all these choices, systematically., to derive the string x 
in

. Since

there are atmost i.e. choices. This algorithms is of exponential time complexity. We now present 
anefficient (polynomial time) membership algorithm.

Pumping Lemma:

Limitations of Finite Automata and Non regular Languages
:

The class of languages recognized by FA s is strictly the regular set. There are certain languages which are
non regular i.e. cannot be recognized by any FA

Consider the language

In order to accept is language, we find that, an automaton seems to need to remember when passing the 
center point between a's and b's how many a's it has seen so far. Because it would have to compare that 
with
the number of b's to either accept (when the two numbers are same) or reject (when they are not same) the
input string.

4
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But the number of a's is not limited and may be much larger than the number of states since the string may 
be arbitrarily long. So, the amount of information the automaton need to remember is unbounded.

A finite automaton cannot remember this with only finite memory (i.e. finite number of states). The fact that FA
s have finite memory imposes some limitations on the structure of the languages recognized. Inductively, we 
can say that a language is regular only if in processing any string in this language, the information that has to

be remembered at any point is strictly limited. The argument given above to show that

informal. We now present a formal method for showing that certain languages such 
as

is non regular is

are non regular

Properties of CFL’s

Closure properties of CFL:

We consider some important closure properties of CFLs.

Theorem : If and are CFLs then so is

Proof : Let

we can assume that

and be CFGs generating. Without loss of generality,

. Let is a nonterminal not in or . We construct the grammar

from and , where

,

We now show that

Thus proving the theorem.

Let . Then . All productions applied in their derivation are also in . Hence i.e.

Similarly, if , then

Thus .

4
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Conversely, let . Then and the first step in this derivation must be either or

. Considering the former case, we have

Since and are disjoint, the derivation must use the productions of only ( which are also in

) Since is the start symbol of . Hence, giving .

Using similar reasoning, in the latter case, we get . Thus .

So, , as claimed

Theorem : If and are CFLs, then so is .

Proof : Let

Again, we assume that

and be the CFGs generating and respectively.

and are disjoint, and is a nonterminal not in or . we construct the CFG

from and , where

We claim that

. We can derive the string xy inTo prove it, we first assume that and . Then and

as shown below.

since and . Hence .

4
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For the converse, let . Then the derivation of w in will be of the form

i.e. the first step in the derivation must see the rule . Again, since

using productions in

and are

disjoint and and , some string x will be generated from

.

( which are

also in

Thus

) and such that

Hence and .

This means that w can be divided into two parts x, y such that
completes the proof

and . Thus .This

Theorem : If L is a CFL, then so is .

be the CFG generating L. Let us construct the CFG from 
G

Proof : Let

where .

We now prove that

can generate

, which prove the theorem.

in one step by using the production since , can generate any string in L.

. w can be generated byfor any n >1 we can write

using following steps.

Let where for

SS producing the sentential form of n numbers of S 's. 

The

First (n-1)-steps uses the production 
S
nonterminal S in the i-th position then generates using production in P ( which are also in )

for n >1 andIt is also easy to see that G can generate the empty string, any string in L and any string
none other.

Hence

Theorem : CFLs are not closed under intersection

Proof : We prove it by giving a counter example. Consider the 
language
CFG generates L1 and hence a CFL

.The following

4
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The nonterminal X generates strings of the form and C generates strings of the form , .

These are the only types of strings generated by X and C. Hence, S generates .

Using similar reasoning, it can be shown that the following grammar
also a CFL.

and hence it is

But, and is already shown to be not context-free.

Hence proof.

Theorem : A CFL's are not closed under complementations

Proof : Assume, for contradiction, that CFL's are closed under complementation. SInce, CFL's are also 
closed
under union, the language , where and are CFL's must be CFL. But by DeMorgan's law

This contradicts the already proved fact that CFL's are not closed under intersection.

But it can be shown that the CFL's are closed under intersection with a regular set.

Theorem : If L is a CFL and R is a regular language, then is a CFL.

be a PDA for L and let be a DFA for R.Proof : Let

We construct a PDA M from P and D as 
follows

where is defined as

contains iff
5
0

www.Vidyarthiplus.com

www.Vidyarthiplus.com



III CSE

CSE

CS2303 THEORY OF COMPUTATION

and contains

The idea is that M simulates the moves of P and D parallely on input w, and accepts w iff both P and 
D

We apply induction on n, the number of moves, to show 
that

iff

and

Basic Case is n=0. Hence , and . For this case it is trivially true

Inductive hypothesis : Assume that the statement is true for n 
-1.

Inductive Step : Let w = xa and

Let

By inductive hypothesis, and

From the definition of and considering the n-th move of the PDA M above, we have

and

Hence and

If and , then and we got that if M accepts w, then both P and D accepts it.

is a CFL ( since it is accepted by a PDA M )We can show that converse, in a similar way. Hence
This property is useful in showing that certain languages are not context-
free.
Example : Consider the language

Intersecting L with the regular set , we get

5
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Which is already known to be not context-free. Hence L is not context-free

Theorem : CFL's are closed under reversal. That is if L is a CFL, then so 
is

generates L. We construct a CFGProof : Let the CFG where

. We now show that , thus proving the theorem.
We need to prove that

iff .
The proof is by induction on n, the number of steps taken by the derivation. We assume, for simplicity (and 
of

course without loss of generality), that G and hence are in CNF.
The basis is n=1 in which case it is trivial. Because must be either or BC with .

Hence iff

Assume that it is true for (n-1)-steps. Let

and it gives

. Then the first step must apply a rule of the form

where and

By constructing of G',
Hence

The converse case is exactly similar
Substitution :

be a language (over any alphabet). This defines a function S, called substitution, 
on

, let which is

denoted as - for all
This definition of substitution can be extended further to apply strings and langauge as well.

If , where , is a string in , then

.
Similarly, for any language L,

The following theorem shows that CFLs are closed under substitution.

is a CFL, and s is a substitution onThereom : Let
s(L) is a CFL

such that is a CFL for all , thus

Proof : Let L = L(G) for a CFG and for every , for some

. Without loss of generality, assume that the sets of nonterminals N 
and

's are
disjoint.

5
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Now, we construct a grammar , generating s(L), from G and 's as follows :

•

•

•
• consists of

1. and
2. The production of P but with each terminal a in the right hand side of a production replaced by

everywhere.

We now want to prove that this construction works i.e. iff .

If Part : Let then according to the definition there is some string and

for such that

We will show that .

From the construction of , we find that, there is a derivation corresponding to the string

(since contains all productions of G but every ai replaced with in the RHS of any
production).

Every
Hence

is the start symbol of and all productions of are also included in .

Therefore,

(Only-if Part) Let . Then there must be a derivative as follows :

(using the production of G include in as modified by (step 2) of the construction of .)

's and N are disjoin. Therefore,Each
we get

( ) can only generate a string , since each

since

5
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since

The string is formed by substituting strings for each and hence .

Theorem : CFL's are closed under homomorphism

Proof : Let be a CFL, and h is a homomorphism on i.e for some alphabets . consider

the following substitution S:Replace each symbol by the language consisting of the only string h(a), i.e.

for all . Then, it is clear that, h(L) = s(L). Hence, CFL's being closed under 
substitutionmust also be closed under homomorphism.
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UNIT NO: 3 NAME: CONTEXT FREE GRAMMAR AND LANGUAGES

Grammar

A grammar is a mechanism used for describing languages. This is one of the most simple but yet 
powerful mechanism. There are other notions to do the same, of course.

In everyday language, like English, we have a set of symbols (alphabet), a set of words constructed from 
these
symbols, and a set of rules using which we can group the words to construct meaningful sentences. The 
grammar for English tells us what are the words in it and the rules to construct sentences. It also tells us 
whether a particular sentence is well-formed (as per the grammar) or not. But even if one follows the rules of 
the english grammar it may lead to some sentences which are not meaningful at all, because of 
impreciseness and ambiguities involved in the language. In english grammar we use many other higher level 
constructs like noun-phrase, verb-phrase, article, noun, predicate, verb etc. A typical rule can be defined as

< sentence > < noun-phrase > < predicate >

meaning that "a sentence can be constructed using a 'noun-phrase' followed by a predicate".

Some more rules are as follows:

< noun-phrase > < article >< noun >

< predicate > < verb >

with similar kind of interpretation given above.

If we take {a, an, the} to be <article>; cow, bird, boy, Ram, pen to be examples of <noun>; and eats, runs,
swims, walks, are associated with <verb>, then we can construct the sentence- a cow runs, the boy eats, an
pen walks- using the above rules. Even though all sentences are well-formed, the last one is not
meaningful.  We observe that we start with the higher level construct <sentence> and then reduce it to
<noun-phrase>,
<article>, <noun>, <verb> successively, eventually leading to a group of words associated with these
constructs.

These concepts are generalized in formal language leading to formal grammars. The word 'formal' here refers
to the fact that the specified rules for the language are explicitly stated in terms of what strings or symbols 
can occur. There can be no ambiguity in it.

Formal definitions of a Grammar

5
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A grammar G is defined as a quadruple.

N is a non-empty finite set of non-terminals or variables,

is a non-empty finite set of terminal symbols such that

, is a special non-terminal (or variable) called the start symbol, and
finite set of production rules.

is a

The binary relation defined by the set of production rules is denoted by , i.e. iff .

In other words, P is a finite set of production rules of the form , where and

Production rules:

The production rules specify how the grammar transforms one string to another. Given a 
string

, we say

to rewritethat the production rule is applicable to this string, since it is possible to use the 
rule

the (in ) to obtaining a new string . We say that derives and is denoted as

Successive strings are dervied by applying the productions rules of the grammar in any arbitrary order. 
A
particular rule can be used if it is applicable, and it can be applied as many times as described.

We write
derived from

if the string can be derived from the string in zero or more steps; if can be
in one or more steps.

By applying the production rules in arbitrary order, any given grammar can generate many strings of terminal
symbols starting with the special start symbol, S, of the grammar. The set of all such terminal strings is 
called
the language generated (or defined) by the grammar.

the language generated by G isFormaly, for a given grammar

That is iff .
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If , we must have for some , , denoted as a

are denoted as sentential forms of thederivation sequence of w, The strings
derivation.

, where N = {S}, ={a, b} and P is the set of the followingExample : Consider the grammar
production rules

{ 
S

ab, S aSb}

Some terminal strings generated by this grammar together with their derivation is given below.

S ab

S aSb aabb

S aSb aaSbb aaabbb

It is easy to prove that the language generated by this grammar is

By using the first production, it generates the string ab ( for i =1 ).

To generate any other string, it needs to start with the production S aSb and then the non-terminal S in the
RHS can be replaced either by ab (in which we get the string aabb) or the same production 
S

aSb can be
used one or more times. Every time it adds an 'a' to the left and a 'b' to the right of S, thus giving the 
sentential

. When the non-terminal is replaced by ab (which is then only possibility for generating 
a

form

terminal string) we get a terminal string of the form .

There is no general rule for finding a grammar for a given language. For many languages we can devise
grammars and there are many languages for which we cannot find any grammar.

Example: Find a grammar for the language .

It is possible to find a grammar for L by modifying the previous grammar since we need to generate an extra 
b
at the end of the string . We can do this by adding a production 

S
Bb where the non-terminal 
B

generates as given in the previous example.

Using the above concept we devise the follwoing grammar for L.

where, N = { S, B }, P = {
S

Bb, B ab, B aBb }

Parse Trees:

5
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Construction of a Parse tree:

5
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Yield of a Parse tree:

Ambiguity in languages and grammars:
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Push down automata:

Regular language can be charaterized as the language accepted by finite automata. Similarly, we can 
characterize the context-free language as the langauge accepted by a class of machines called 
"P      u  s      hdown A      uto  m  ata" (PDA). A pushdown automation is an extension of the NFA.

It is observed that FA have limited capability. (in the sense that the class of languages accepted or
characterized by them is small). This is due to the "f  i      n  i      te   m  e      m  o  r      y" (number of states) and "no     e  x      te  r  nal   
m  e      m  o  r      y"involved with them. A PDA is simply an NFA augmented with an "e  x      te  r  nal     s      ta  c  k   m  e  m      o  ry". The addition of a
stack provides the PDA with a last-in, first-out memory management cpapability. This "S      ta  ck  " or 
"pu  s      hdown
s      to  r  e" can be used to record a potentially unbounded information. It is due to this memory management 
capability with the help of the stack that a PDA can overcome the memory limitations that prevents a FA to
accept many interesting languages like . Although, a PDA can store an unbounded amount of
information on the stack, its access to the information on the stack is limited. It can push an element onto the
top of the stack and pop off an element from the top of the stack. To read down into the stack the top elements
must be popped off and are lost. Due to this limited access to the information on the stack, a PDA still has 
some limitations and cannot accept some other interesting languages.

As shown in figure, a PDA has three components: an input tape with read only head, a finite control and a
pushdown store.

The input head is read-only and may only move from left to right, one symbol (or cell) at a time. In each step,
the PDA pops the top symbol off the stack; based on this symbol, the input symbol it is currently reading, 
and
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its present state, it can push a sequence of symbols onto the stack, move its read-only head one cell (or
symbol) to the right, and enter a new state, as defined by the transition rules of the PDA.

PDA are nondeterministic, by default. That is, - transitions are also allowed in which the PDA can pop and
push, and change state without reading the next input symbol or moving its read-only head. Besides this, there
may be multiple options for possible next moves.

Formal Definitions : Formally, a PDA M is a 7-tuple M 
=

•

•

•

is a finite set of states,

is a finite set of input symbols (input alphabets), 

is a finite set of stack symbols (stack 

alphabets),
• is a transition function from to subset of

•

•

is the start state

, is the initial stack symbol, and

• , is the final or accept states.

Explanation of the transition 
function,

:

If, for any , . This means intitutively that whenever the
PDA is in state q reading input symbol a and z on top of the stack, it can nondeterministically for any 
i,

•
•

go to state
pop z off the stack

• push onto the stack (where ) (The usual convention is that if , then

will be at the top and at the bottom.)
• move read head right one cell past the current symbol a.

If a = , then means intitutively that whenver the PDA is in

state q with z on the top of the stack regardless of the current input symbol, it can nondeterministically for 
anyi, ,

•

•

go to state

pop z off the stack

•
•

push onto the stack, and
leave its read-only head where it is.

6
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State transition diagram : A PDA can also be depicted by a state transition diagram. The labels on the arcs
indicate both the input and the stack operation. The transition

for and is depicted by

Final states are indicated by double circles and the start state is indicated by an arrow to it from 
nowhere.

Configuration or Instantaneous Description (ID)
:

A configuration or an instantaneous description (ID) of PDA at any moment during its computation is an

element of describing the current state, the portion of the input remaining to be read 
(i.e.under and to the right of the read head), and the current stack contents. Only these three elements 

can
affect the computation from that point on and, hence, are parts of the ID.

The start or inital configuartion (or ID) on input is . That is, the PDA always starts in its

start state, with its read head pointing to the leftmost input symbol and the stack containing only 
the

start/initial stack symbol, .

The "next move relation" one figure describes how the PDA can move from one configuration to 
another
in one step.
Formally,

iff
'a' may be or an input symbol.

Let I, J, K be IDs of a PDA. We define we write 

I
K, if ID I can become K after exactly i moves. 
The

relations and define as follows

I K

I J if such that 
I

K and K J

I J if such that 
I

J.

6
3

www.Vidyarthiplus.com

www.Vidyarthiplus.com



III CSE

CSE

CS2303 THEORY OF COMPUTATION

. We say that 
I

J if the ID J follows from the ID I inThat is, is the reflexive, transitive closure of
zero or more moves.

( Note : subscript M can be dropped when the particular PDA M is understood. )

Language accepted by a PDA 
M
There are two alternative definiton of acceptance as given below.

1. Acc      eptan  c      e     by     f      i      nal     s      tate :

. Informally, the PDA M is said to a  c  c      e  pt     i      ts   i      nputConsider the PDA by     f      i      nal
s      tate if it enters any final state in zero or more moves after reading its entire input, starting in the 
startconfiguration on input .

Formally, we define L(M), the language accepted by final state to be

{ | }for some and

2. Acc      eptan  c      e     by     e  m  pty     s      ta  c      k   (  or     Nu  l      l     s      ta  ck      ) : The PDA M a  cc      ep  t  s     i      t  s 
i      nput

by     e      m  pty     s      ta  c      k   if starting in the

start configuration on input , it ever empties the stack w/o pushing anything back on after reading the entire
input. Formally, we define N(M), the language accepted by empty stack, to 
be

{ | }for some

Note that the set of final states, F is irrelevant in this case and we usually let the F to be the empty set i.e. F 
=
Q .

Example 1 : Here is a PDA that accepts the language .

, 
and

consists of the following transitions

6
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The PDA can also be described by the adjacent transition 
diagram.

Informally, whenever the PDA M sees an input a in the start 
state

with the start symbol z on the top of the

stack it pushes a onto the stack and changes state to . (to remember that it has seen the first 'a'). On state

if it sees anymore a, it simply pushes it onto the stack. Note that when M is on state , the symbol on the

top of the stack can only be a. On state if it sees the first b with a on the top of the stack, then it needs to
start comparison of numbers of a's and b's, since all the a's at the begining of the input have already been 
pushed onto the stack. It start this process by popping off the a from the top of the stack and enters in state q3

(to remember that the comparison process has begun). On 
state

, it expects only b's in the input (if it sees
any more a in the input thus the input will not be in the proper form of anbn). Hence there is no more on input 
a
when it is in state . On state it pops off an a from the top of the stack for every b in the input. When 

itsees the last b on state q3 (i.e. when the input is exaushted), then the last a from the stack will be popped off
-input ) the PDA 
M

and the start symbol z is exposed. This is the only possible case when the input (i.e. 
on
will move to state which is an accept state.
we can show the computation of the PDA on a given input using the IDs and next move relations. For 
example,
following are the computation on two input strings.

Let the input be aabb. we start with the start configuration and proceed to the subsequent IDs using the
transition function defined

( using transition 1 )

( using transition 2 )

( using transition 3 )
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( using transition 4 ),
string aabb is rightly accepted by 
M

( using transition 5 ) , is final state. Hence , accept. So the

we can show the computation of the PDA on a given input using the IDs and next move relations. For 
example,
following are the computation on two input strings.

i) Let the input be aabab.

No further move is defined at this point.

Hence the PDA gets stuck and the string aabab is not accepted.

Example 2 : We give an example of a PDA M that accepts the set of balanced strings of parentheses [] 
by empty stack.
The PDA M is given below.

where is defined as

Informally, whenever it sees a [, it will push the ] onto the stack. (first two transitions), and whenever it sees a ]
and the top of the stack symbol is [, it will pop the symbol [ off the stack. (The third transition). The fourth 
transition is used when the input is exhausted in order to pop z off the stack ( to empty the stack) and accept. 
Note that there is only one state and no final state. The following is a sequence of configurations leading to 
the acceptance of the string [ [ ] [ ] ] [ ].

Equivalence of acceptance by final state and empty 
stack.

It turns out that the two definitions of acceptance of a language by a PDA - accpetance by final state and
empty

stack- are equivalent in the sense that if a language can be accepted by empty stack by some PDA, it can also
be accepted by final state by some other PDA and vice versa. Hence it doesn't matter which one we use,

since
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each kind of machine can simulate the other.Given any arbitrary PDA M that accpets the language L by final
state or empty stack, we can always construct an equivalent PDA M with a single final state that accpets 
exactly the same language L. The construction process of M' from M and the proof of equivalence of M & 
M' are given below.

There are two cases to be considered.

CASE I : PDA M accepts by final state, Let Let qf be a new state not in Q.

Consider the PDA where as well as the following transition.

. It is easy to show that M and M' are equivalent i.e.contains

)

and

L(M) = L(

Let L(M) . Then for some and

Then

Thus accepts

Conversely, let accepts i.e. L( ), then for

inherits all other moves except the last one from M. Hence for some

.

Thus M accepts . Informally, on any input simulate all the moves of M and enters in its own final state

whenever M enters in any one of its final status in F. Thus iff M accepts it.accepts a string

CASE II : PDA M accepts by empty stack.

from M in such a way that simulates M and detects when M empties its stack.We will construct

when and only when M empties its stack.Thus will accept a string iff Menters its final state
accepts.

and 
X

Let

transition of

where and contains all the

, as well as the following two transitions.

and

6
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to enter the initial configuration of M except thatTransitions 1 causes will have its own bottom-of-stack

will simulate every move of Mmarker X which is below the symbols of M's stack. From this point onward

since all the transitions of M are also in

If M ever empties its stack, then when simulating M will empty its stack except the symbol X at the 
bottom.

At this point, will enter its final state by using transition rule 2, thereby (correctly) accepting the input.

We will prove that M and are equivalent.

Let M accepts . Then

for some . But then

( by transition rule 1)

includes all the moves of M )( Since

( by transition rule 2 )

Hence, also accepts . Conversely, let accepts .

Then for some

Every move in the sequence, were taken from M.

Hence, M starting with its initial configuration will eventually empty its stack and accept the input 
i.e.

Equivalence of PDA’s and CFG’s:
We will now show that pushdown automata and context-free grammars are equivalent in expressive power,
that is, the language accepted by PDAs are exactly the context-free languages. To show this, we have to prove
each of the following:

i) Given any arbitrary CFG G there exists some PDA M that accepts exactly the same language
generated by G.

ii) Given any arbitrary PDA M there exists a CFG G that generates exactly the same language
accpeted by M.

(i) CFA to PDA

We will first prove that the first part i.e. we want to show to convert a given CFG to an equivalent 
PDA.

6
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Let the given CFG is . Without loss of generality we can assume that G is in 
GreibachNormal Form i.e. all productions of G are of the form .

where and .

From the given CFG G we now construct an equivalent PDA M that accepts by empty stack. Note that there 
is
only one state in M. Let

, where

•

•
•
•

•

q is the only state

is the input alphabet, 
N is the stack alphabet ,
q is the start state.

S is the start/initial stack symbol, and , the transition relation is defined as follows

For each production , . We now want to show

that M and G are equivalent i.e. L(G)=N(M). i.e. for any . iff .

, then by definition of L(G), there must be a leftmost derivation starting with S and deriving 
w.

If

i.e.

Again if , then one sysmbol. Therefore we need to show that for any .

iff .

But we will prove a more general result as given in the following lemma. Replacing A by S (the start 
symbol)and by gives the required proof.

Lemma For any , and , via a leftmost derivative iff

.

Proof : The proof is by induction on n.

Basis : n = 0

6
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iff i.e. and

iff

iff

Induction Step :

First, assume that via a leftmost derivation. Let the last production applied in their derivation is

for some and .

Then, for some ,

where and

Now by the indirection hypothesis, we get,

.............................................................................(1)

Again by the construction of M, we get

so, from (1), we get

since and , we get

That is, if , then . Conversely, assume that

and let

7
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be the transition used in the last move. Then for some , and

where and .

Now, by the induction hypothesis, we get

via a leftmost derivation.

Again, by the construction of M, must be a production of G. [ Since ].

Applying the production to the sentential form we get

i.e.

via a leftmost derivation.

Hence the proof.

Example : Consider the CFG G in GNF

S

A

B

aAB

a / aA

a / bB

The one state PDA M equivalent to G is shown below. For convenience, a production of G and the
corresponding transition in M are marked by the same encircled number.

(1) S
(2) A
(3) A
(4) B
(5) B

aAB
a 

aA 
a 
bB

. We have used the same construction discussed earlier

Some Useful Explanations :
Consider the moves of M on input aaaba leading to acceptance of the string.
Steps

7
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1. (q, aaaba, s) ( q, aaba, AB )

( q, aba, AB )2.

3. ( q, ba, B )

( q, a, B )4.

5. ( q, , ) Accept by empty stack.

Note : encircled numbers here shows the transitions rule applied at every step.
Now consider the derivation of the same string under grammar G. Once again, the production used at 
every step is shown with encircled number.

S aAB aaAB
3

aaaB
4

aaabB
5

aaaba
Steps 1 2

Observations:
• There is an one-to-one correspondence of the sequence of moves of the PDA M and the derivation

sequence under the CFG G for the same input string in the sense that - number of steps in both the
cases are same and transition rule corresponding to the same production is used at every step (as 
shown by encircled number).
considering the moves of the PDA and derivation under G together, it is also observed that at every
step the input read so far and the stack content together is exactly identical to the corresponding
sentential form i.e.
<what is Read><stack> = <sentential form>

•

Say, at step 2, Read so far = 
a
stack = AB

Sentential form = aAB From this property we claim that iff . If the claim is

true, then apply with
definition )

and we get iff or iff ( by

Thus N(M) = L(G) as desired. Note that we have already proved a more general version of the claim

PDA and CFG:

We now want to show that for every PDA M that accpets by empty stack, there is a CFG G such that L(G) 
=
N(M)
we first see whether the "reverse of the construction" that was used in part (i) can be used here to construct 
an
equivalent CFG from any PDA  M.

It can be show that this reverse construction works only for single state 
PDAs. 7
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• That is, for every one-state PDA  M there is CFG G  such that L(G) = N(M). For every move of the

PDA  M we introduce a production in the

where N = T andgrammar .

we can now apply the proof in part (i) in the reverse direction to show that L(G) = N(M).

But the reverse construction does not work for PDAs with more than one state. For example, consider the 
PDA
M produced here to accept the langauge

Now let us construct CFG using the "reverse" construction.

( Note ).

Transitions in 
M

Corresponding Production in 
G

We can drive strings like aabaa which is in the language.

But under this grammar we can also derive some strings which are not in the language. 
e.g

and . But

Therefore, to complete the proof of part (ii) we need to prove the following claim 
also.

Claim: For every PDA M there is some one-state PDA such that .

It is quite possible to prove the above claim. But here we will adopt a different approach. We start with 
any

arbitrary PDA M  that accepts by empty stack and directly construct an equivalent CFG G.

7
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PDA to CFG
We want to construct a CFG G to simulate any arbitrary PDA M with one or more states. Without loss 
of generality we can assume that the PDA M accepts by empty stack.
The idea is to use nonterminal of the form <PAq> whenever PDA M in state P with A on top of the stack goes

to state . That is, for example, for a given transition of the PDA corresponding production in the grammar 
asshown below,

And, we would like to show, in general, that

the top of the stack will finish processing

iff the PDA M, when started from state P with A on

, arrive at state q and remove A from the stack.
we are now ready to give the construction of an equivalent CFG G from a given PDA M. we need to introduce
two kinds of producitons in the grammar as given below. The reason for introduction of the first kind of
production will be justified at a later point. Introduction of the second type of production has been justified in 
the
above discussion.

Let be a PDA. We construct from M a equivalent 
CFG

Where

• N is the set of nonterminals of the form <PAq> for
two kind of production

and P contains the follwoingand

1.

2. If , then for every choice of the sequence ,

, .

Include the follwoing production

If n = 0, then the production is .For the whole exercise to be meaningful we want

means there is a sequence of transitions ( for PDA M ), starting in state q, ending in ,

during which the PDA M consumes the input string and removes A from the stack (and, of course, all other
symbols pushed onto stack in A's place, and so on.)

That is we want to claim that

iff

If this claim is true, then let to get iff for some

as production in G. Therefore,. But for all we have

7
4

www.Vidyarthiplus.com

www.Vidyarthiplus.com



III CSE

CSE

CS2303 THEORY OF COMPUTATION

iff PDA M accepts w by empty stack or L(G) = N(M)iff i.e.

Now, to show that the above construction of CFG G from any PDA M works, we need to prove the proposed
claim.

Note: At this point, the justification for introduction of the first type of production (of the form
the CFG G, is quite clear. This helps use deriving a string from the start symbol of the 
grammar.

) in

Proof : Of the claim iff for some , and
The proof is by induction on the number of steps in a derivation of G (which of course is equal to the number 
of
moves taken by M). Let the number of steps taken is n.

The proof consists of two parts: ' if ' part and ' only if ' part. First, consider the ' if ' part

If then .

Basis is n =1

Then
a production of G.

. In this case, it is clear that . Hence, by construction is

Then

Inductive Hypothesis :

Inductive Step :

For n >1, let w = ax for some and consider the first move of the PDA M which uses the

general transition =

. Now M must remove from stack while
consuming x in the remaining n-1 moves.

is the prefix of x that M has consumed whenLet , where first appears at top of

the stack. Then there must exist a sequence of states in M (as per 
construction)

(with
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[ This step implies ]

[ This step implies ]
...

=

[ Note: Each step takes less than or equal to n -1 moves because the total number of moves required 
assumed
to be n-1.]

That is, in general

, .

So, applying inductive hypothesis we get

, . But corresponding to the original move

in M we have added the following production in G.

We can show the computation of the PDA on a given input using the IDs and next move relations. For 
example,
following are the computation on two input strings.
i) Let the input be aabb. we start with the start configuration and proceed to the subsequent IDs using the
transition function defined

( using transition 1 ) , ( using transition 2 )

( using transition 3 ), ( using transition 4 )

( using transition 5 ) , is final state. Hence, accept.

So the string aabb is rightly accepted by M.

we can show the computation of the PDA on a given input using the IDs and next move relations. For 
example,
following are the computation on two input strings.

i) Let the input be aabab.

7
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No further move is defined at this point.

Hence the PDA gets stuck and the string aabab is not accepted.

The following is a sequence of configurations leading to the acceptance of the string [ [ ] [ ] ] [
].

Equivalence of acceptance by final state and empty 
stack.

It turns out that the two definitions of acceptance of a language by a PDA - accpetance by final state and 
empty
stack- are equivalent in the sense that if a language can be accepted by empty stack by some PDA, it can also
be accepted by final state by some other PDA and vice versa. Hence it doesn't matter which one we use, since
each kind of machine can simulate the other.Given any arbitrary PDA M that accpets the language L by final 
state or empty stack, we can always construct an equivalent PDA M with a single final state that accpets 
exactly the same language L. The construction process of M' from M and the proof of equivalence of M & M' 
are given below

There are two cases to be considered.

CASE 1 : PDA M accepts by final state, Let . Let be a new state not in Q.

Consider the PDA where as well as the following transition.

. It is easy to show that M andcontains and are equivalent i.e.

.

Let . Then for some and

Then .

Thus accepts .

7
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Conversely, let accepts i.e. , then for some

inherits all other moves except the last one from M. Hence.

.

for some

Thus M accepts simulate all the moves of M and enters in its own final state. Informally, on any input

whenever M enters in any one of its final status in F. Thus accepts a string iff M accepts it.

CASE 2 : PDA M accepts by empty 
stack.

we will construct from M in such a way that simulates M and detects when M empties its stack.

when and only when M empties its stack.Thus iff Menters its final state
accepts.

will accept a string

Let

the transition of

where

, as well as the following two transitions.

and and contains all

and

to enter the initial configuration of M except thatTransitions 1 causes will have its own bottom-of-stack
marker X which is below the symbols of M's stack. From this point onward M' will simulate every move of 
Msince all the transitions of M are also in .

If M ever empties its stack, then when simulating M will empty its stack except the symbol X at the 
bottom.

At this point , will enter its final state by using transition rule 2, thereby (correctly) accepting the input.

we will prove that M and are equivalent.

Let M accepts .

Then

for some . But then,

( by transition rule 1 )

include all the moves of M )( since

7
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( by transition rule 2 )

Hence, also accepts .Conversely, let accepts .

for some Q .Then

Every move in the sequence

were taken from M.

Hence, M starting with its initial configuration will eventually empty its stack and accept the input 
i.e.

.

Deterministic PDA:

Regular Languages and DPDA’s The DPDA’s accepts a class of languages that is in between the regular
languages and CFL’s.

7
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Deterministic Pushdown Automata (DPDA) and Deterministic Context-free Languages 
(DCFLs)

Pushdown automata that we have already defined and discussed are nondeterministic by default, that is , there may be two 
or more moves involving the same combinations of state, input symbol, and top of the stock, and again, for some state 

andtop of the stock the machine may either read and input symbol or make an - transition (without consuming any input).

In deterministic PDA , there is never a choice of move in any situation. This is handled by preventing the above mentioned 
two cases as described in the definition below.

Defnition : Let
satisfied.

be a PDA . Then M is deterministic if and only if both the following conditions 
are

1. has at most one element for any and (this condition prevents multiple choice f

any combination of )

2. If and for every

(This condition prevents the possibility of a choice between a move with or without an input 
symbol).
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UNIT NO:4 NAME: PROPERTIES OF CONTEXT - FREE LANGUAGES

Empty Production Removal
The productions of context-free grammars can be coerced into a variety of forms without
affecting the expressive power of the grammars. If the empty string does not belong to a 
language, then there is a way to eliminate the productions of the form A→ λ from the grammar.
If the empty string belongs to a language, then we can eliminate λ from all productions
save for the single production S → λ. In this case we can also eliminate any occurrences of S from
the right-hand side of productions.
Procedure to find CFG with out empty Productions

8
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Unit production removal

Left Recursion Removal

8
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NORMAL FORMS
Two kinds of normal forms viz., Chomsky Normal Form and Greibach Normal Form (GNF) 
are
considered here.

Chomsky Normal Form (CNF)
Any context-free language L without any λ-production is generated by a grammar is
which productions are of the form A → BC or A→ a, where A, B ∈VN , and a ∈ V
Τ. Procedure to find Equivalent Grammar in CNF
(i) Eliminate the unit productions, and λ-productions if any,
(ii) Eliminate the terminals on the right hand side of length two or more.
(iii) Restrict the number of variables on the right hand side of productions to two.
Proof:
For Step (i): Apply the following theorem: “Every context free language can be generated by
a
grammar with no useless symbols and no unit productions”.
At the end of this step the RHS of any production has a single terminal or two or more 
symbols. Let us assume the equivalent resulting grammar as G = (VN ,VT ,P ,S ).
For Step (ii): Consider any production of the form

8
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Example
Obtain a grammar in Chomsky Normal Form (CNF) equivalent to the grammar G 
with
productions P given

Solution

8
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Pumping Lemma for CFG
A “Pumping Lemma” is a theorem used to show that, if certain strings belong to a
language, then certain other strings must also belong to the language. Let us discuss a Pumping 
Lemma for CFL. We will show that , if L is a context-free language, then strings of L that are at 
least ‘m’ symbols long can be “pumped” to produce additional strings in L. The value of ‘m’ 
depends on the particular language. Let L be an infinite context-free language. Then there is some
positive integer ‘m’ such that, if S is a string of L of Length at least ‘m’, then
(i) S = uvwxy (for some u, v, w, x, y)
(ii) | vwx| ≤ m
(iii) | vx| ≥1
(iv) uv iwx i y∈L.
for all non-negative values of i.
It should be understood that
(i) If S is sufficiently long string, then there are two substrings, v and x, somewhere in S.
There is stuff (u) before v, stuff (w) between v and x, and stuff (y), after x.
(ii) The stuff between v and x won’t be too long, because | vwx | can’t be larger than m.
(iii) Substrings v and x won’t both be empty, though either one could be.
(iv) If we duplicate substring v, some number (i) of times, and duplicate x the same number
of times, the resultant string will also be in L.
Definitions
A variable is useful if it occurs in the derivation of some string. This requires that
(a) the variable occurs in some sentential form (you can get to the variable if you start from S), 
and (b) a string of terminals can be derived from the sentential form (the variable is not a “dead 
end”). A variable is “recursive” if it can generate a string containing itself. For example, variable 
A is
recursive if

Proof of Pumping Lemma
(a) Suppose we have a CFL given by L. Then there is some context-free Grammar G that 
generates
L. Suppose
(i) L is infinite, hence there is no proper upper bound on the length of strings belonging to L.
(ii) L does not contain l.
(iii) G has no productions or l-productions.

8
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There are only a finite number of variables in a grammar and the productions for each
variable have finite lengths. The only way that a grammar can generate arbitrarily long strings is if
one or more variables is both useful and recursive. Suppose no variable is recursive. Since the start
symbol is non recursive, it must be defined only in terms of terminals and other variables. Then
since those variables are non recursive, they have to be defined in terms of terminals and still other
variables and so on.
After a while we run out of “other variables” while the generated string is still finite. Therefore
there is an upper bond on the length of the string which can be generated from the start symbol.
This contradicts our statement that the language is finite.
Hence, our assumption that no variable is recursive must be incorrect.
(b) Let us consider a string X belonging to L. If X is sufficiently long, then the derivation of X 
must have involved recursive use of some variable A. Since A was used in the derivation, the 
derivation should have started as

8
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Usage of Pumping Lemma
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Hence our original assumption, that L is context free should be false. Hence the language L is 
not
con text-free.
Example
Check whether the language given by L = {a mbmcn : m ≤ n ≤ 2m} is a CFL or not. 
Solution

Closure properties of CFL – 
Substitution
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Applications of substitution 
theorem
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Reversal

Inverse Homomorphism:

9
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Turing machine:

Informal Definition:

We consider here a basic model of TM which is deterministic and have one-tape. There are many variations, 
all
are equally powerfull.

The basic model of TM has a finite set of states, a semi-infinite tape that has a leftmost cell but is infinite to 
the right and a tape head that can move left and right over the tape, reading and writing symbols.

For any input w with |w|=n, initially it is written on the n leftmost (continguous) tape cells. The infinitely many
cells to the right of the input all contain a blank symbol, B whcih is a special tape symbol that is not an input 
symbol. The machine starts in its start state with its head scanning the leftmost symbol of the input w. 
Depending upon the symbol scanned by the tape head and the current state the machine makes a move 
which consists of the following:

•
•
•

writes a new symbol on that tape cell,
moves its head one cell either to the left or to the right and
(possibly) enters a new state.

The action it takes in each step is determined by a transition functions. The machine continues computing 
(i.e.
making moves) until

•
•

it decides to "accept" its input by entering a special state called accept or final state 
or
halts without accepting i.e. rejecting the input when there is no move defined.

On some inputs the TM many keep on computing forever without ever accepting or rejecting the input, in 
which case it is said to "loop" on that input

Formal Definition :

Formally, a deterministic turing machine (DTM) is a 7-tuple , where

•

•

•

Q is a finite nonempty set of states.

is a finite non-empty set of tape symbols, callled the tape alphabet of M.

is a finite non-empty set of input symbols, called the input alphabet of M.

is the transition function of M,•

9
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•

•

•

is the initial or start state.

is the blank symbol

is the set of final state.

So, given the current state and tape symbol being read, the transition function describes the next state, 
symbol
to be written on the tape, and the direction in which to move the tape head ( L and R denote left and right,
respectively ).

Transition function :

• The heart of the TM is the transition function, because it tells us how the machine gets one step to
the next.

• when the machine is in a certain state q   Q and the head is currently scanning the tape 

, and if , then the machine

1. replaces the symbol X by Y on the tape
2. goes to state p, and
3. the tape head moves one cell ( i.e. one tape symbol ) to the left ( or right ) if D is L ( or R ).

The ID (instantaneous description) of a TM capture what is going out at any moment i.e. it contains all the
information to exactly capture the "current state of the computations".

It contains the following:

•
•
•

The current state, q
The position of the tape head,
The constants of the tape up to the rightmost nonblank symbol or the symbol to the left of the head,
whichever is rightmost.

Note that, although there is no limit on how far right the head may move and write nonblank symbols on 
the tape, at any finite

time, the TM has visited only a finite prefix of the infinite 
tape.

An ID (or configuration) of a TM M is denoted by where and

•
•

•

is the tape contents to the left of the head
q is the current state.

is the tape contents at or to the right of the tape head

That is, the tape head is currently scanning the leftmost tape symbol 
of
head is scanning a blank symbol)

. ( Note that if , then the tape

If is the start state and w is the input to a TM M then the starting or initial configuration of M is 
onviously

denoted by

9
5

www.Vidyarthiplus.com

www.Vidyarthiplus.com



III CSE

CSE

CS2303 THEORY OF COMPUTATION

Moves of Turing Machines

To indicate one move we use the symbol
move of a TM

. Similarly, zero, one, or more moves will be represented by . A

M is defined as follows.

be an ID of M whereLet , and .

of M.Let there exists a transition

Then we write meaning that ID yields

• Alternatively , if

means that the ID

is a transition of M, then we write which

yields

• In other words, when two IDs are related by the relation
( or the second is the result of the first) by one move.

, we say that the first one yields the second

• ( If the TM M is understand,If IDj results from IDi by zero, one or more (finite) moves then we 
writethen the subscript M can be dropped from or )

Special Boundary Cases

• be an transition of M. ThenLet be an ID and . That is, the head is not
allowed to fall off the left end of the tape.

• Let be an ID and then figure (Note that is equivalent to )

• Let be an ID and then figure

• Let be an ID and then figure

, denoted as L(M) isThe language accepted by a TM

L(M) = { w | }and figure for some 
p

F and

In other words the TM M accepts a string that cause M to enter a final or accepting state when started

in its initial ID (i.e. ). That is a TM M accepts the string

exists such that

if a sequence of IDs,

•

•

is the initial or starting ID of 
M

;
9
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• The representation of IDk contains an accepting state.

The set of strings that M accepts is the language of M, denoted L(M), as defined 
above

More about configuration and acceptance

• of M is called an accepting (or final) ID ifAn ID

• An ID
point.

is called a blocking (or halting) ID if is undefined i.e. the TM has no move at this

•

•

is called reactable from if

is the initial (or starting) ID if
of M.

is the input to the TM and is the initial (or start) state

On any input string

either

• M halts on w if there exists a blocking (configuration) ID, such that

There are two cases to be considered

• M accepts w if I is an accepting ID. The set of all
already defined

accepted by M is denoted as L(M) as

• M rejects w if is a blocking configuration. Denote by reject (M), the set of all rejected by M.

or

• M loops on w if it does not halt on w.

Let loop(M) be the set of all on which M loops for.

It is quite clear that

That is, we assume that a TM M halts

•

•

When it enters an accepting or

When it enters a blocking i.e. when there is no next move.

, it is possible that the TM M loops for ever i.e. it never haltsHowever, on some input string, ,

9
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The Halting Problem
The input to a Turing machine is a string. Turing machines themselves can be written as
strings. Since these strings can be used as input to other Turing machines. A “Universal Turing
machine” is one whose input consists of a description M of some arbitrary Turing machine, and
some input w to which machine M is to be applied, we write this combined input as M + w. This
produces the same output that would be produced by M. This is written as
Universal Turing Machine (M + w) = M (w).
As a Turing machine can be represented as a string, it is fully possible to supply a Turing
machine as input to itself, for example M (M). This is not even a particularly bizarre thing to do for
example, suppose you have written a C pretty printer in C, then used the Pretty printer on itself. 
Another common usage is Bootstrapping—where some convenient languages used to write a
minimal compiler for some new language L, then used this minimal compiler for L to write a new, 
improved compiler for language L. Each time a new feature is added to language L, you can 
recompile and use this new feature in the next version of the compiler. Turing machines sometimes
halt, and sometimes they enter an infinite loop.
A Turing machine might halt for one input string, but go into an infinite loop when given
some other string. The halting problem asks: “It is possible to tell, in general, whether a given 
machine will halt for some given input?” If it is possible, then there is an effective procedure to look
at a Turing machine and its input and determine whether the machine will halt with that input. If 
there is an effective procedure, then we can build a Turing machine to implement it. Suppose we
have a Turing machine “WillHalt” which, given an input string M + w, will halt and accept the string
if Turing machine M halts on input w and will halt and reject the string if Turing machine M does
not  halt  on input w. When viewed as a Boolean function, “WillHalt (M, w)”  halts and returns
“TRUE” in the first case, and (halts and) returns “FALSE” in the second.
Theorem
Turing Machine “WillHalt (M, w)” does not exist.
Proof: This theorem is proved by contradiction. Suppose we could build a machine “WillHalt”. 
Then we can certainly build a second machine, “LoopIfHalts”, that will go into an infinite loop 
if and only if “WillHalt” accepts its input:
Function LoopIfHalts (M, w):
if WillHalt (M, w) then
while true do { }
else
return false;
We will also define a machine “LoopIfHaltOnItSelf” that, for any given input M, representing a
Turing machine, will determine what will happen if M is applied to itself, and loops if M will halt 
in this case.
Function LoopIfHaltsOnItself (M):
return LoopIfHalts (M, M):
Finally, we ask what happens if we try:
Func tion Impos sible:
return LoopIfHaltsOnItself (LoopIfHaltsOnItself):
This machine, when applied to itself, goes into an infinite loop if and only if it halts when
applied to itself. This is impossible. Hence the theorem is proved.

9
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Implications of Halting Problem
Programming

The Theorem of “Halting Problem” does not say that we can never determine whether or not
a given program halts on a given input. Most of the times, for practical reasons, we could 
eliminate infinite loops from programs. Sometimes a “meta-program” is used to check another 
program for
potential infinite loops, and get this meta-program to work most of the time.
The theorem says that we cannot ever write such a meta-program and have it work all of the
time. This result is also used to demonstrate that certain other programs are also impossible.
The basic outline is as follows:
(i) If we could solve a problem X, we could solve the Halting problem
(ii) We cannot solve the Halting Problem
(iii) Therefore, we cannot solve problem

A Turing machine can be "programmed," in much the same manner as a computer is
programmed. When one specifies the function which we usually call δ for a Tm, he is really 
writing a program for the Tm.

1. Storage in finite Control
The finite control can be used to hold a finite amount of information. To do so, the state is
written as a pair of elements, one exercising control and the other storing a symbol. It should be 
emphasized that this arrangement is for conceptual purposes only. No modification in the 
definition
of the Turing machine has been made.
Example
Consider the Turing machine
Solution

9
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2. Multiple Tracks
We can imagine that the tape of the Turing machine is divided into k tracks, for any finite k. This 
arrangement is shown in Fig., with k = 3. What is actually done is that the symbols on the tape are
considered as k-tuples. One component for each track.
Example
The tape in Fig. can be imagined to be that of a Turing machine which takes a binary input
greater than 2, written on the first track, and determines if it is a prime. The input is surrounded by ¢
and $ on the first track.
Thus, the allowable input symbols are [¢, B, B], [0, B, B ], [1, B, B ], and [$, B, B]. These
symbols can be identified with ¢, 0, 1, and $, respectively, when viewed as input symbols. The 
blank
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symbol can be represented by [B, B, B ]
To test if its input is a prime, the Tm first writes the number two in binary on the second track
and copies the first track onto the third track. Then, the second track is subtracted, as many times 
as possible, from the third track, effectively dividing the third track by the second and leaving the 
remainder. If the remainder is zero, the number on the first track is not a prime. If the remainder is 
nonzero, increase the number on the second track by one.
If now the second track equals the first, the number on the first track is a prime, because it cannot
be divided by any number between one and itself. If the second is less than the first, the whole 
operation is repeated for the new number on the second track. In Fig., the Tm is testing to 
determine if 47 is a prime. The Tm is dividing by 5; already 5 has been subtracted twice, so 37 
appears on the third track.

3. Subroutines

10
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UNIT NO: 5 NAME: UNDECIDABILITY

Design a Turing machine to add two given integers.
Solution:

Some unsolvable Problems are as follows:
(i) Does a given Turing machine M halts on all input?
(ii) Does Turing machine M halt for any input?
(iii) Is the language L(M) finite?
(iv) Does L(M) contain a string of length k, for some given k?
(v) Do two Turing machines M1 and M2 accept the same language?
It is very obvious that if there is no algorithm that decides, for an arbitrary given Turing machine 
M and input string w, whether or not M accepts w. These problems for which no algorithms exist 
are called “UNDECIDABLE” or “UNSOLVABLE”.

Code for Turing Machine:

10
2

www.Vidyarthiplus.com

www.Vidyarthiplus.com



III CSE

CSE

CS2303 THEORY OF COMPUTATION

10
3

www.Vidyarthiplus.com

www.Vidyarthiplus.com



III CSE

CSE

CS2303 THEORY OF COMPUTATION

Diagonalization language:

This table represents language acceptable by Turing 
machine
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Proof that Ld is not recursively enumerable:

Recursive Languages:
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Universal
Language:
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Undecidability of Universal Language:

Problem -Reduction :
If P1 reduced to P2,
Then P2 is at least as hard as P1.
Theorem: If P1 reduces to P2 then,

• If P1 is undecidable the so is P2.
• If P1 is Non-RE then so is P2.
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P      os  t  '      s     Co  rr      esp  o      nde  n      ce     Pr      oblem   (  P      C  P      )

A post correspondence system consists of a finite set of ordered pairs where

for some alphabet .

Any sequence of numbers

is called a solution to a Post Correspondence 
System.

The Post's Correspondence Problem is the problem of determining whether a
Post Correspondence system has a solutions.

Example 1 : Consider the post correspondence system

The list 1,2,1,3 is a solution to it.

Because

(A post correspondence system is also denoted as an instance of the PCP)

Example 2 : The following PCP instance has no solution

This can be proved as follows. cannot be chosen at the start, since than the LHS and RHS would

differ in the first symbol ( in LHS and in RHS). So, we must start with . The next pair must be

so that the 3 rd symbol in the RHS becomes identical to that of the LHS, which is a . After this

step, LHS and RHS are not matching. If is selected next, then would be mismatched in the 7 th symbol

10
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( in LHS and in RHS). If is selected, instead, there will not be any choice to match the both side in
the next step.

Example3 : The list 1,3,2,3 is a solution to the following PCP instance.

The following properties can easily be proved.

Proposition The Post Correspondence System

has solutions if and only if

Corollary : PCP over one-letter alphabet is decidable.

Proposition Any PCP instance over an alphabet with is equivalent to a PCP instance over an

alphabet with

Proof : Let

Consider We can now encode every as any PCP instance over will now

have only two symbols, 0 and 1 and, hence, is equivalent to a PCP instance over

Theorem : PCP is undecidable. That is, there is no algorithm that determines whether an arbitrary 
Post
Correspondence System has a solution.

Proof: The halting problem of turning machine can be reduced to PCP to show the undecidability of PCP. Since
halting problem of TM is undecidable (already proved), This reduction shows that PCP is also undecidable. 
The proof is little bit lengthy and left as an exercise.

Some undecidable problem in context-free languages

We can use the undecidability of PCP to show that many problem concerning the context-free languages 
are
undecidable. To prove this we reduce the PCP to each of these problem. The following discussion makes it
clear how PCP can be used to serve this purpose.

11
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Let be a Post Correspondence System over the alphabet . We construct
two CFG's Gx and Gy from the ordered pairs x,y respectively as follows.

and

where

and

it is clear that the grammar generates the strings that can appear in the LHS of a sequence while solving
the PCP followed by a sequence of numbers. The sequence of number at the end records the sequence 
of
strings from the PCP instance (in reverse order) that generates the string. 
Similarly,

generates the strings
that can be obtained from the RHS of a sequence and the corresponding sequence of numbers (in 
reverse order).

Now, if the Post Correspondence System has a solution, then there must be a sequence

According to the construction of and

In this case

11
1

www.Vidyarthiplus.com

www.Vidyarthiplus.com



III CSE

CSE

CS2303 THEORY OF COMPUTATION

Hence , and implying

Conversely, let

Hence, w must be in the form w1w2 where and w2 in a sequence (since, only that kind of

strings can be generated by each of and ).

Now, the string is a solution to the Post Correspondence System.

It is interesting to note that we have here reduced PCP to the language of pairs of CFG,s whose intersection is
nonempty. The following result is a direct conclusion of the above.

Theorem : Given any two CFG's G1 and G2 the question "Is " is undecidable.

Proof: Assume for contradiction that there exists an algorithm A to decide this question. This would imply 
that
PCP is decidable as shown below.

For any Post Correspondence System, P construct grammars and by using the constructions

elaborated already. We can now use the algorithm A to decide whether and

Thus, PCP is decidable, a contradiction. So, such an algorithm does not 
exist.

If and are CFG's constructed from any arbitrary Post Correspondence System, than it is not difficult 
to

show that and are also context-free, even though the class of context-free languages are 
notclosed under complementation.

and their complements can be used in various ways to show that many other questions
related to CFL's are undecidable. We prove here some of those.

Theorem : Foe any two arbitrary CFG's the following questions are undecidable

i. Is

ii. Is

11
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iii. Is

Proof :

i. If then,

Hence, it suffice to show that the question “Is " is undecidable.

Since, and are CFl's and CFL's are closed under union, is also context-

free. By DeMorgan's theorem,

If there is an algorithm to decide whether we can use it to decide whether

or not. But this problem has already been proved to be undecidable.

Hence there is no such algorithm to decide or not.

ii.

Let P be any arbitrary Post correspondence system and
strings.

and are CFg's constructed from the pairs of

must be a CFL and let G1generates L1. That is,

by De Morgan's theorem, as shown already, any string, represents a solution to the

PCP. Hence, contains all but those strings representing the solution to the PCP.

Let for same CFG G2.

It is now obvious that if and only if the PCP has no solutions, which is already proved to 
be

undecidable. Hence, the question “Is ?" is undecidable.

iii.
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Let be a CFG generating the language and G2 be a CFG generating

where and are CFG.s constructed from same arbitrary instance of 
PCP.

iff

i.e. iff the PCP instance has no solutions as discussed in part (ii).

Hence the proof.

Theorem : It is undecidable whether an arbitrary CFG is 
ambiguous.

Proof : Consider an arbitrary instance of PCP and construct the 
CFG's
strings.

and from the ordered pairs of

We construct a new grammar G from and as follows.

where

is same as that of and .

This constructions gives a reduction of PCP to the -------- of whether a CFG is ambiguous, thus leading to 
the
undecidability of the given problem. That is, we will now show that the PCP has a solution if and only if G is
ambiguous. (where G is constructed from an arbitrary instance of PCP).

Only if Assume that is a solution sequence to this instance of PCP.

Consider the following two derivation in .
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But ,

is a solution to the PCP. Hence the same string of terminals
derivations are, clearly, leftmost. Hence G is ambiguous.

has two derivations. Both these

If It is important to note that any string of terminals cannot have more than one derivation 
in

and

Because, every terminal string which are derivable under these grammars ends with a sequence of 
integers

This sequence uniquely determines which productions must be used at every step of the derivation.

Hence, if a terminal string,
step.

, has two leftmost derivations, then one of them must begin with the

then continues with derivations under

In both derivations the resulting string must end with a sequence for same The reverse of
this sequence must be a solution to the PCP, because the string that precede in one case 
is

and in the other case. Since the string derived in both cases are identical, the

sequence

must be a solution to the PCP.

Hence the proof
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Class p-problem solvable in polynomial time:

Non deterministic polynomial time:
A nondeterministic TM that never makes more than p(n) moves in any sequence of choices for 
some
polynomial p is said to be non polynomial time NTM.•

•
•

NP is the set of languags that are accepted by polynomial time NTM’s
Many problems are in NP but appear not to be in p.
One of the great mathematical questions of our age: is there anything in NP that is not in 
p?NP-complete problems:

If We cannot resolve the “p=np question, we can at least demonstrate that certain problems in NP 
are
the hardest , in the sense that if any one of them were in P , then P=NP.•

•
These are called NP-complete.
Intellectual leverage: Each NP-complete problem’s apparent difficulty reinforces the 
belief that they are all hard.

Methods for proving NP-Complete problems:
• Polynomial time reduction (PTR): Take time that is some polynomial in the input size

to
convert instances of one problem to instances of another.
If P1 PTR to P2 and P2 is in P1 the so is P1.
Start by showing every problem in NP has a PTR to Satisfiability of Boolean
formula.  Then, more problems can be proven NP complete by showing that  SAT
PTRs to them directly or indirectly.

•
•
•
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